首页> 外文期刊>The Journal of Chemical Physics >Spatial updating grand canonical Monte Carlo algorithms for fluid simulation: Generalization to continuous potentials and parallel implementation
【24h】

Spatial updating grand canonical Monte Carlo algorithms for fluid simulation: Generalization to continuous potentials and parallel implementation

机译:空间更新大正则蒙特卡罗流体模拟算法:对连续电位的一般化和并行实现

获取原文
获取原文并翻译 | 示例
           

摘要

Spatial updating grand canonical Monte Carlo algorithms are generalizations of random and sequential updating algorithms for lattice systems to, continuum fluid models. The elementary steps, insertions or removals, are constructed by generating points in space either at random (random updating) or in a prescribed order (sequential updating). These algorithms have previously been developed only for systems of impenetrable spheres for which no particle overlap occurs. In this work, spatial updating grand canonical algorithms are generalized to continuous, soft-core potentials to account for overlapping configurations. Results on two- and three-dimensional Lennard-Jones fluids indicate that spatial updating grand canonical algorithms, both random and sequential, converge faster than standard grand canonical algorithms. Spatial algorithms based on sequential updating not only exhibit the fastest convergence but also are ideal for parallel implementation due to the absence of strict detailed balance and the nature of the updating that minimizes interprocessor communication. Parallel simulation results for three-dimensional Lennard-Jones fluids show a substantial reduction of simulation time for systems of moderate and large size. The efficiency improvement by parallel processing through domain decomposition is always in addition to the efficiency improvement by sequential updating.
机译:空间更新大正则蒙特卡罗算法是针对晶格系统到连续流体模型的随机和顺序更新算法的推广。基本步骤,插入或删除是通过随机(随机更新)或以指定顺序(顺序更新)在空间中生成点来构造的。这些算法以前仅针对没有粒子重叠发生的不可渗透球体系统开发。在这项工作中,空间更新大规范算法被概括为连续的软核潜力,以解决重叠的配置问题。二维Lennard-Jones流体的结果表明,随机和顺序空间更新大正则算法的收敛速度比标准大正则算法快。基于顺序更新的空间算法不仅表现出最快的收敛速度,而且由于缺乏严格的详细平衡以及使处理器间通信最小化的更新特性,因此非常适合并行执行。三维Lennard-Jones流体的并行仿真结果显示,对于中型和大型系统,仿真时间大大减少。除通过顺序更新进行的效率提高之外,通过域分解并行处理进行的效率提高始终是必需的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号