...
首页> 外文期刊>The Journal of Chemical Physics >Density-functional geometry optimization of the 150 000-atom photosystem-I trimer
【24h】

Density-functional geometry optimization of the 150 000-atom photosystem-I trimer

机译:15万个原子光系统I三聚体的密度函数几何优化

获取原文
获取原文并翻译 | 示例
           

摘要

We present a linear-scaling method based on the use of density-functional theory (DFT) for the system-wide optimization of x-ray structural coordinates and apply it to optimize the 150 000 atoms of the photosystem-I (PS-I) trimer. The method is based on repetitive applications of a multilevel ONIOM procedure using the PW91/6-31G(d) DFT calculations for the high level and PM3 for the lower level; this method treats all atoms in the structure equivalently, a structure in which the majority of the atoms can be considered as part of some internal "active site." To obtain a realistic single structure, some changes to the original protein model were necessary but these are kept to a minimum in order that the optimized structure most closely resembles the original x-ray one. Optimization has profound effects on the perceived electronic properties of the cofactors, with, e.g., optimization lowering the internal energy of the chlorophylls by on average 53 kcal mol(-1) and eliminates the enormous 115 kcal mol(-1) energy spread depicted by the original x-ray heavy-atom coordinates. A highly precise structure for PS-I results that is suitable for analysis of device function. Significant qualitative features of the structure are also improved such as correction of an error in the stereochemistry of one of the chlorophylls in the "special pair" of the reaction center, as well as the replacement of a water molecule with a metal cation in a critical region on the C-3 axis. The method also reveals other unusual features of the structure, leading both to suggestions concerning device functionality and possible mutations between gene sequencing and x-ray structure determination. The optimization scheme is thus shown to augment the molecular modeling schemes that are currently used to add medium-resolution structural information to the raw scattering data in order to obtain atomically resolved structures. System-wide optimization is now a feasible process and its use within protein x-ray data refinement should be considered. (c) 2006 American Institute of Physics.
机译:我们提出了一种基于密度泛函理论(DFT)的线性缩放方法,用于对X射线结构坐标进行系统范围的优化,并将其应用于优化光系统I(PS-I)的15万个原子三聚体。该方法基于多级ONIOM程序的重复应用,其中PW91 / 6-31G(d)DFT计算用于高级别,而PM3用于低级别。此方法等效地处理结构中的所有原子,该结构中的大部分原子可以视为某些内部“活性位点”的一部分。为了获得逼真的单一结构,必须对原始蛋白质模型进行一些更改,但这些更改必须保持在最低限度,以使优化后的结构与原始X射线最相似。优化对辅因子的感知电子特性产生了深远影响,例如,优化使叶绿素的内部能量平均降低了53 kcal mol(-1),并消除了115kcal mol(-1)的巨大能量散布。原始X射线重原子坐标。 PS-I结果的高精度结构适合分析设备功能。该结构的重要定性特征也得到了改善,例如纠正了反应中心“特殊对”中叶绿素之一的立体化学中的错误,以及在临界状态下用金属阳离子取代了水分子。 C-3轴上的区域。该方法还揭示了该结构的其他异常特征,从而导致有关设备功能的建议以及基因测序和X射线结构确定之间可能的突变。因此,示出了优化方案以增强分子建模方案,该分子建模方案当前用于将中等分辨率的结构信息添加到原始散射数据中以获得原子解析的结构。现在,系统范围的优化是一个可行的过程,应考虑在蛋白质X射线数据优化中使用它。 (c)2006年美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号