...
首页> 外文期刊>The Journal of Chemical Physics >Towards an accurate representation of electrostatics in classical force fields:efficient implementation of multipolar interactions in biomolecular simulations
【24h】

Towards an accurate representation of electrostatics in classical force fields:efficient implementation of multipolar interactions in biomolecular simulations

机译:力求经典力场中静电的精确表示:生物分子模拟中多极相互作用的有效实现

获取原文
获取原文并翻译 | 示例
           

摘要

The accurate simulation of biologically active macromolecules faces serious limitations that originate in the treatment of electrostatics in the empirical force fields.The current use of "partial charges" is a significant source of errors,since these vary widely with different conformations.By contrast,the molecular electrostatic potential (MEP) obtained through the use of a distributed multipole moment description,has been shown to converge to the quantum MEP outside the van der Waals surface,when higher order multipoles are used.However,in spite of the considerable improvement to the representation of the electronic cloud,higher order multipoles are not part of current classical biomolecular force fields due to the excessive computational cost.In this paper we present an efficient formalism for the treatment of higher order multipoles in Cartesian tensor formalism.The Ewald 'direct sum' is evaluated through a mcMurchie-Davidson formalism [L.McMurchie and E.Davidson,J.Comput.Phys.26,218 (1978)].The "reciprocal sum" has been implemented in three different ways:using an Ewald scheme,a particle mesh Ewald (PME) method,and a multigrid-based approach.We find that even though the use of the McMurchie-Davidson formalism considerably reduces the cost of the calculation with respect to the standard matrix implementation of multipole interactions,the calculation in direct space remains expensive.When most of the calculation is moved to reciprocal space via the PME method,the cost of a calculation where all multipolar interactions (up to hexadecapole-hexadecapole) are included is only about 8.5 times more expensive than a regular AMBER 7 [D.A.Pearlman et al,Comput.Phys.Commun.91,1 (1995)] implementation with only charge-charge interactions.The multigrid implementation is slower but shows very promising results for parallelization.It provides a natural way to interface with continuous,Gaussian-based electrostatics in the future.It is hoped that this new formalism will facilitate the systematic implementation of higher order multipoles in classical biomolecular force fields.
机译:精确模拟生物活性大分子面临着严重的局限性,这些局限性源于经验力场中对静电的处理。目前,“部分电荷”的使用是错误的重要来源,因为这些错误因构象的不同而有很大差异。通过使用分布式多极矩描述获得的分子静电势(MEP)已被证明在使用高阶多极子时会聚到范德华表面外的量子MEP。电子云的表示,由于计算成本过高,高阶多极点不属于当前经典的生物分子力场。在本文中,我们提出了一种有效的形式主义,用于笛卡尔张量形式化中的高阶多极子的处理。通过mcMurchie-Davidson形式主义[L.McMurchie和E.Davidson,J.Comput.Phys.26,2 18(1978)]。“倒数和”已通过三种不同的方式实现:使用Ewald方案,粒子网格Ewald(PME)方法和基于多网格的方法。我们发现,即使使用McMurchie -戴维森形式主义相对于多极相互作用的标准矩阵实现大大降低了计算成本,直接空间中的计算仍然很昂贵。当大多数计算通过PME方法移至倒数空间时,计算成本为所包含的所有多极相互作用(高达十六极-十六极)仅比常规AMBER 7贵8.5倍[DAPearlman等人,Comput.Phys.Commun.91,1(1995)],仅采用电荷-电荷相互作用多重网格的实现速度较慢,但​​在并行化方面显示出非常有希望的结果。它为将来与连续的基于高斯的静电相互作用提供了一种自然的方式。希望这种新的形式主义将有助于在经典生物分子力场中系统地实现高阶多极子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号