...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >Redox properties and catalytic activity of surface-bound human sulfite oxidase studied by a combined surface enhanced resonance Raman spectroscopic and electrochemical approach
【24h】

Redox properties and catalytic activity of surface-bound human sulfite oxidase studied by a combined surface enhanced resonance Raman spectroscopic and electrochemical approach

机译:结合表面增强共振拉曼光谱和电化学方法研究表面结合的人亚硫酸盐氧化酶的氧化还原性质和催化活性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Human sulfite oxidase (hSO) was immobilised on SAM-coated silver electrodes under preservation of the native heme pocket structure of the cytochrome b5 (Cyt 65) domain and the functionality of the enzyme. The redox properties and catalytic activity of the entire enzyme were studied by surface enhanced resonance Raman (SERR) spectroscopy and cyclic voltammetry (CV) and compared to the isolated heme domain when possible. It is shown that heterogeneous electron transfer and catalytic activity of hSO sensitively depend on the local environment of the enzyme. Increasing the ionic strength of the buffer solution leads to an increase of the heterogeneous electron transfer rate from 17 s~(-1) to 440 s~(-1) for hSO as determined by SERR spectroscopy. CV measurements demonstrate an increase of the apparent turnover rate for the immobilised hSO from 0.85 s~(-1) in 100 mM buffer to 5.26 s~(-1) in 750 mM buffer. We suggest that both effects originate from the increased mobility of the surface-bound enzyme with increasing ionic strength. In agreement with surface potential calculations we propose that at high ionic strength the enzyme is immobilised via the dimerisation domain to the SAM surface. The flexible loop region connecting the Moco and the Cyt 65 domain allows alternating contact with the Moco interaction site and the SAM surface, thereby promoting the sequential intramolecular and heterogeneous electron transfer from Moco via Cyt b5 to the electrode. At lower ionic strength, the contact time of the Cyt b5 domain with the SAM surface is longer, corresponding to a slower overall electron transfer process.
机译:在保留细胞色素b5(Cyt 65)域的天然血红素口袋结构和酶功能的情况下,将人亚硫酸盐氧化酶(hSO)固定在SAM涂层的银电极上。通过表面增强共振拉曼光谱(SERR)和循环伏安法(CV)研究了整个酶的氧化还原特性和催化活性,并在可能的情况下与分离的血红素域进行了比较。结果表明,hSO的异质电子转移和催化活性敏感地取决于酶的局部环境。通过SERR光谱法确定,对于hSO,缓冲溶液的离子强度增加导致异质电子传输速率从17 s〜(-1)增加到440 s〜(-1)。 CV测量表明,固定化的hSO的表观转换速率从100 mM缓冲液中的0.85 s〜(-1)增加到750 mM缓冲液中的5.26 s〜(-1)。我们建议这两种效果都源于表面结合酶的迁移率随离子强度的增加而增加。与表面电势计算一致,我们建议在高离子强度下,酶通过二聚化结构域固定在SAM表面。连接Moco和Cyt 65域的柔性环区域允许与Moco相互作用位点和SAM表面交替接触,从而促进从Moco经由Cyt b5到分子的顺序分子内和异质电子转移。在较低的离子强度下,Cyt b5结构域与SAM表面的接触时间更长,这对应于较慢的整体电子传输过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号