首页> 外文期刊>RSC Advances >Ca-doped CuS/graphene sheet nanocomposite as a highly catalytic counter electrode for improving quantum dot-sensitized solar cell performance
【24h】

Ca-doped CuS/graphene sheet nanocomposite as a highly catalytic counter electrode for improving quantum dot-sensitized solar cell performance

机译:Ca掺杂CuS /石墨烯片纳米复合材料作为高催化对电极,可改善量子点敏化太阳能电池的性能

获取原文
获取原文并翻译 | 示例
           

摘要

Copper sulfide (CuS) is one of the most important counter electrodes (CEs) in high-efficiency, quantum dot-sensitized solar cells (QDSSCs). In this work, we investigated the effect of Mg, Ca, Sr and Ba ion incorporation into the CuS layer on the photovoltaic performance of quantum dot-sensitized solar cells. Metal ion-doped CuS was deposited by the successive ionic layer adsorption and reaction (SILAR) method on the FTO substrate. As a result, the quantum dot photoanode with the optimized Ca-doped CuS CE exhibited power conversion efficiency (PCE) of 2.33%, which is much higher than bare CuS CE (PCE 1.68%), Ba-doped CuS (1.81%), Mg-doped CuS (1.82%) and Sr-doped CuS (1.67%). A sandwiched structural Ca-doped CuS/graphen sheet (Ca-doped CuS/GS) electrode was prepared by repeating electrophoretic deposition (EPD) of graphene sheets and deposition of Ca-doped CuS nanoparticles. When a Ca-doped CuS/graphene sheet (Ca-doped CuS/GS) was used as a CE, the QDSSC exhibited higher power conversion efficiency (2.73%) compared to cells with Ca-doped CuS (2.33%) and bare-CuS (1.68%) cathodes. A full description of reasons for efficiency enhancement are discussed in this paper by using diverse electrochemical and spectral analyses.
机译:硫化铜(CuS)是高效量子点敏化太阳能电池(QDSSC)中最重要的对电极(CE)之一。在这项工作中,我们研究了将Mg,Ca,Sr和Ba离子掺入CuS层对量子点敏化太阳能电池光伏性能的影响。通过连续离子层吸附和反应(SILAR)方法将金属离子掺杂的CuS沉积在FTO基板上。结果,具有优化的Ca掺杂CuS CE的量子点光电阳极的功率转换效率(PCE)为2.33%,远高于裸CuS CE(PCE 1.68%),Ba掺杂CuS(1.81%),掺Mg的CuS(1.82%)和掺Sr的CuS(1.67%)。通过重复石墨烯片的电泳沉积(EPD)和Ca掺杂的CuS纳米颗粒的沉积,制备了夹层结构的Ca掺杂的CuS /石墨片(Ca掺杂的CuS / GS)电极。当将掺Ca的CuS /石墨烯片(掺Ca的CuS / GS)用作CE时,与掺有Ca掺杂的CuS(2.33%)和裸CuS的电池相比,QDSSC表现出更高的功率转换效率(2.73%) (1.68%)阴极。本文通过使用多种电化学和光谱分析,全面讨论了提高效率的原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号