...
首页> 外文期刊>Macromolecules >Confinement Effects on Chain and Glass Dynamics in Immiscible Polymer Blends
【24h】

Confinement Effects on Chain and Glass Dynamics in Immiscible Polymer Blends

机译:密闭性对不溶混聚合物共混物链和玻璃动力学的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Dynamics of two-component polymer systems such as blends, copolymers, and nanocomposites, are complicated and not well understood at a fundamental level. It is clear from experimental evidence that the effect of one component on the dynamics of the second is nontrivial. For example, in contrast with wellentangled homopolymer melts, miscible polymer blends often show a dramatic failure of time-temperature superposition (tTS) principle, and very broad glass transitions are typically observed. It is generally accepted that these macroscopic observations are a result of distinct dynamics of the blends components, since each component experiences a different local friction from that of the pure polymer.Among the variousmodels that attempt to predict miscible blend component dynamics, the self-concentration model proposed by Lodge and McLeish9 has received considerable attention recently. On the other hand, most investigations on immiscible blends have only focused on droplet breakup dynamics, but their molecular dynamics have received very little attention. We have designed a series of immiscible model blends wherein a small fraction of __probe__ chains is dispersed in a very high-molecular weight (MW) phase-separated matrix, as a heretofore uninvestigated model system, in order to examine the impact of confinement from the matrix on the terminal and glass dynamics of the probe. Current theories10 suggest that confinement effects are expected when length scales are below 10 times the mean-square end-to-end distance 01/2 usually ranging from 10 to 30 nm. However, we have observed a strong confinement effect formicrometer-size dispersed droplets, which is much larger than this estimated critical dimension (10_01/2).
机译:两组分聚合物体系(例如共混物,共聚物和纳米复合材料)的动力学非常复杂,在基本水平上尚不为人所知。从实验证据可以清楚地看出,一种成分对第二种成分的动力学影响不小。例如,与缠结的均聚物熔体相反,可混溶的聚合物共混物通常显示出时间-温度叠加(tTS)原理的显着失效,并且通常观察到非常宽的玻璃化转变。人们普遍认为,这些宏观观察是共混物组分独特动力学的结果,因为每种组分与纯聚合物均经历不同的局部摩擦。在尝试预测可混溶共混物组分动力学的各种模型中,自浓Lodge和McLeish9提出的模型最近受到了相当大的关注。另一方面,大多数对不混溶共混物的研究只集中在液滴破裂动力学上,但是它们的分子动力学却很少受到关注。我们设计了一系列不混溶的模型共混物,其中一小部分__probe__链分散在非常高分子量(MW)的相分离基体中,作为迄今为止未经研究的模型系统,目的是研究限制条件对端子上的矩阵和探头的玻璃动力学。当前的理论10提示,当长度尺度小于均方根端到端距离 01/2的10倍时,通常会在10到30 nm范围内产生限制作用。然而,我们已经观察到对微米尺寸的分散液滴的强限制作用,其远大于该估计的临界尺寸(10 R 2 _01 / 2)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号