...
首页> 外文期刊>Electrochimica Acta >A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. Part III: Experimental validation
【24h】

A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. Part III: Experimental validation

机译:温度相关的多离子模型,用于电化学加工过程的时间精确数值模拟。第三部分:实验验证

获取原文
获取原文并翻译 | 示例
           

摘要

The temperature distribution and shape evolution during electrochemical machining (ECM) are the result of a large number of interacting physical processes. Electrolyte flow, electrical conduction, ion transport, electrochemical reactions, heat generation and heat transfer strongly influence one another, making modeling and numerical simulation of ECM a very challenging procedure. In part I [1], a temperature dependent multi-ion transport and reaction model (MITReM) is put forward which considers mass transfer as a consequence of diffusion, convection and migration, combined with the electroneutrality condition and linearized temperature dependent polarization relations at the electrode-electrolyte interface. The flow field is calculated using the incompressible laminar Navier-Stokes equations for viscous flow. The local temperature is obtained by solving internal energy balance, enabling the use of temperature dependent expressions for several physical properties such as the ion diffusion coefficients and electrolyte viscosity. In part II [2], the temperature dependent MITReM is used to simulate ECM of stainless steel in aqueous NaNO_3 electrolyte solution. The effects of temperature, electrode thermal conduction, reaction heat generation, electrolyte flow and water depletion are investigated and a comparison is made between the temperature dependent potential model and MITReM. In this third part, the theoretical model is validated against ECM experiments in a flow-channel cell. The model is further optimized by including the effect of metal hydration and non-linear polarization relations. A close match is obtained between experiment and simulation.
机译:电化学加工(ECM)过程中的温度分布和形状演变是大量相互作用的物理过程的结果。电解液的流动,导电,离子迁移,电化学反应,生热和传热会相互影响,这使得ECM的建模和数值模拟成为一个非常具有挑战性的过程。在第一部分[1]中,提出了一个温度依赖性的多离子迁移和反应模型(MITReM),该模型考虑了由于扩散,对流和迁移而引起的质量转移,并结合了电子中性条件和线性化的温度依赖性极化关系。电极-电解质界面。使用不可压缩的层流Navier-Stokes方程计算粘性流,计算流场。局部温度是通过解决内部能量平衡获得的,从而可以将依赖温度的表达式用于几种物理特性,例如离子扩散系数和电解质粘度。在第二部分[2]中,温度相关的MITReM用于模拟NaNO_3电解质水溶液中不锈钢的ECM。研究了温度,电极热传导,反应热产生,电解质流量和水耗竭的影响,并对温度依赖性电势模型和MITReM进行了比较。在第三部分中,针对流通道单元中的ECM实验验证了理论模型。通过包括金属水化和非线性极化关系的影响,进一步优化了该模型。实验和模拟之间获得了紧密匹配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号