首页> 外文期刊>ACS applied materials & interfaces >Immobilization of Metal-Organic Framework Nanocrystals for Advanced Design of Supported Nanocatalysts
【24h】

Immobilization of Metal-Organic Framework Nanocrystals for Advanced Design of Supported Nanocatalysts

机译:金属有机骨架纳米晶体的固定化,用于负载型纳米催化剂的高级设计

获取原文
获取原文并翻译 | 示例
           

摘要

In recent years, metal organic frameworks (MOFs) have been employed as heterogeneous catalysts or precursors for synthesis of catalytic materials. However, conventional MOFs and their derivatives usually exhibit limited mass transfer and modest catalytic activities owing to a lengthy diffusion path and less exposed active sites. In contrast, it has been generally conceived that nanoscale MOFs are beneficial to materials utilization and mass transport, but their instability poses a serious issue to practical application. To tackle above challenges, herein we develop a novel and facile approach to the design and synthesis of nanocomposites through in situ growth and directed immobilization of nanoscale MOFs onto layered double hydroxides (LDH). The resulting supported nano-MOFs inherit advantages of pristine-MOF nanocrystals and meanwhile gain enhanced stability and workability under reactive environments. A series of uniform nanometer-sized MOFs, including monometallic (ZIF-8, ZIF-67, and Cu-BTC) and bimetallic (CoZn-ZIF), can be readily synthesized onto hierarchically structured flowerlike MgAl-LDH supports with high dispersion and precision. Additionally, the resultant MgAl-LDH/MOFs can serve as a generic platform to prepare-integrated nanocatalysts via controlled thermolysis. Knoevenagel condensation and reduction of 4-nitrophenol (4-NP) are used as model reactions for demonstrating the technological merits of these nanocatalysts. Therefore, this work elucidates that the-synthetic immobilization of nanoscale MOFs onto conventional catalyst supports is a viable route to develop integrated nanocatalysts with high controllability over structural architecture and chemical composition.
机译:近年来,金属有机骨架(MOF)已用作合成催化材料的非均相催化剂或前体。然而,由于漫长的扩散路径和较少暴露的活性位点,常规的MOF及其衍生物通常表现出有限的传质和适度的催化活性。相反,人们普遍认为,纳米级MOF有利于材料的利用和大众运输,但其不稳定性给实际应用带来了严重的问题。为了解决上述挑战,本文中,我们通过原位生长和将纳米级MOF定向固定在层状双氢氧化物(LDH)上,开发了一种新颖且简便的方法来设计和合成纳米复合材料。所得的负载型纳米MOF继承了原始MOF纳米晶体的优势,同时在反应环境下获得了更高的稳定性和可加工性。可以容易地将一系列均匀的纳米级MOF(包括单金属(ZIF-8,ZIF-67和Cu-BTC)和双金属(CoZn-ZIF))合成到具有高分散性和精度的分层结构的花状MgAl-LDH载体上。此外,所得的MgAl-LDH / MOF可以用作通过受控热解制备集成纳米催化剂的通用平台。 Knoevenagel缩合和4-硝基苯酚(4-NP)还原被用作模型反应,以证明这些纳米催化剂的技术优势。因此,这项工作阐明了将纳米级MOF合成固定在常规催化剂载体上是开发对结构结构和化学组成具有高度可控性的集成纳米催化剂的可行途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号