首页> 外文期刊>ACS applied materials & interfaces >Phase Stability and Stoichiometry in Thin Film Iron Pyrite: Impact on Electronic Transport Properties
【24h】

Phase Stability and Stoichiometry in Thin Film Iron Pyrite: Impact on Electronic Transport Properties

机译:薄膜黄铁矿的相稳定性和化学计量:对电子传输性能的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The use of pyrite FeS2 as an earth-abundant, low-cost, nontoxic thin film photovoltaic hinges on improved understanding and control of certain physical and chemical properties. Phase stability, phase purity, stoichiometry, and defects, are central in this respect, as they are frequently implicated in poor solar cell performance. Here, phase-pure polycrystalline pyrite FeS2 films, synthesized by ex situ sulfidation, are subject to systematic reduction by vacuum annealing (to 550 degrees C) to assess phase stability, stoichiometry evolution, and their impact on transport. Bulk probes reveal the onset of pyrrhotite (Fe1-dS) around 400 degrees C, rapidly evolving into the majority phase by 425 degrees C. This is supported by X-ray photoelectron spectroscopy on (001) crystals, revealing surface Fe1-dS formation as low as 160 degrees C, with rapid growth near 400 degrees C. The impact on transport is dramatic, with Fe1-dS minority phases leading to a crossover from diffusive transport to hopping (due to conductive Fe1-dS nanoregions in an FeS2 matrix), followed by metallicity when Fe1-dS dominates. Notably, the crossover to hopping leads to an inversion of the sign, and a large decrease in magnitude of the Hall coefficient. By tracking resistivity, magnetotransport, magnetization, and structural/chemical parameters vs annealing, we provide a detailed picture of the evolution in properties with stoichiometry. A strong propensity for S-deficient minority phase formation is found, with no wide window where S vacancies control the FeS2 carrier density. These findings have important implications for FeS2 solar cell development, emphasizing the need for (a) nanoscale chemical homogeneity, and (b) caution in interpreting carrier types and densities.
机译:黄铁矿FeS2作为一种富含地球,低成本,无毒的薄膜光伏电池的使用取决于对某些物理和化学性质的了解和控制。相稳定性,相纯度,化学计量和缺陷在这方面至关重要,因为它们经常会导致太阳能电池性能不佳。在这里,通过真空退火(至550摄氏度)将通过异位硫化合成的纯相多晶黄铁矿FeS2薄膜进行系统还原,以评估相稳定性,化学计量的演变及其对传输的影响。大量探针揭示了在400摄氏度左右开始的黄铁矿(Fe1-dS)的形成,并在425摄氏度迅速发展为多数相。这由(001)晶体上的X射线光电子能谱支持,表明表面Fe1-dS的形成为低至160摄氏度,并在400摄氏度附近迅速增长。对运输的影响是巨大的,Fe1-dS少数相导致了从扩散运输到跳跃的过渡(由于FeS2基质中的导电Fe1-dS纳米区域),当Fe1-dS占主导地位时,其次是金属性。值得注意的是,与跳频的交叉导致符号反转,并且霍尔系数的幅度大大降低。通过跟踪电阻率,磁传输,磁化强度和结构/化学参数与退火之间的关系,我们提供了化学计量性质变化的详细图片。发现S缺乏少数相形成的强烈倾向,没有宽的窗口,其中S空位控制FeS2载流子密度。这些发现对FeS2太阳能电池的发展具有重要意义,强调需要(a)纳米级化学均质性,以及(b)在解释载流子类型和密度时要谨慎。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号