首页> 外文期刊>ACS applied materials & interfaces >Origin of Long-Term Storage Stability and Nitric Oxide Release Behavior of CarboSil Polymer Doped with S-Nitroso-N-acetyl-D-penicillamine
【24h】

Origin of Long-Term Storage Stability and Nitric Oxide Release Behavior of CarboSil Polymer Doped with S-Nitroso-N-acetyl-D-penicillamine

机译:S-亚硝基-N-乙酰基-D-青霉胺掺杂的CarboSil聚合物的长期储存稳定性和一氧化氮释放行为的成因

获取原文
获取原文并翻译 | 示例
           

摘要

The prolonged and localized delivery of nitric oxide (NO), a potent antithrombotic and antimicrobial agent, has many potential biomedical applications. In this work, the origin of the long-term storage stability and sustained NO release mechanism of S-nitroso-N-acetyl-D-penicillamine (SNAP)-doped CarboSil 20 80A polymer, a biomedical thermoplastic silicone-polycarbonate-urethane, is explored. Long-term (22 days) localized NO release is achieved by utilizing a cross-linked silicone rubber as topcoats, which can greatly reduce the amount of SNAP, NAP, and NAP disulfide leaching from the SNAP-doped CarboSil films, as measured by LC-MS. Raman spectroscopy and powder X-ray diffraction characterization of SNAP-doped CarboSil films demonstrate that a polymer crystal composite is formed during the solvent evaporation process when SNAP exceeds its solubility in CarboSil (ca. 3.4-4.0 wt %). Further, when exceeding this solubility threshold, SNAP exists in an orthorhombic crystal form within the bulk of the polymer. The proposed mechanism of sustained NO release in SNAP-doped CarboSil is that the solubilized SNAP in the polymer matrix decomposes and releases NO, primarily in the water-rich regions near the polymer/solution interface, and the dissolved SNAP in the bulk polymeric phase becomes unsaturated, resulting in the dissolution of crystalline SNAP within the bulk of the polymer. This is a very slow process that ultimately leads to NO release at the physiological flux levels for >3 weeks. The increased stability of SNAP within CarboSil is attributed to the intermolecular hydrogen bonds between the SNAP molecules that crystallize. This crystallization also plays a key role in maintaining RSNO stability within the CarboSil polymer for >8 months at 37 degrees C (88.5% remains). Further, intravascular catheters fabricated with this new material are demonstrated to significantly decrease the formation of Staphylococcus aureus biofilm (a leading cause of nosocomial bloodstream infections) (in vitro) over a 7 day period, with 5 log units reduction of viable cell count on catheter surfaces. It is also shown that the NO release catheters can greatly reduce thrombus formation on the catheter surfaces during 7 h implantation in rabbit veins, when compared to the control catheters fabricated without SNAP. These results suggest that the SNAP-doped CarboSil system is a very attractive new composite material for creating long-term NO release medical devices with increased stability and biocompatibility.
机译:一氧化氮(NO)(一种有效的抗血栓形成剂和抗微生物剂)的长期和局部递送具有许多潜在的生物医学应用。在这项工作中,S-亚硝基-N-乙酰基-D-青霉胺(SNAP)掺杂的CarboSil 20 80A聚合物(一种生物医学热塑性有机硅-聚碳酸酯-尿烷)的长期储存稳定性和持续的NO释放机理的起因是探索。通过使用交联的硅橡胶作为面漆,可以实现长期(22天)局部NO释放,这可以大大减少从SNAP掺杂的CarboSil膜中浸出的SNAP,NAP和NAP二硫化物的量(通过LC进行测量) -多发性硬化症。掺杂SNAP的CarboSil膜的拉曼光谱和粉末X射线衍射表征表明,当SNAP超过其在CarboSil中的溶解度(约3.4-4.0 wt%)时,在溶剂蒸发过程中形成了聚合物晶体复合物。此外,当超过该溶解度阈值时,SNAP以正交晶体形式存在于聚合物主体中。提议的在SNAP掺杂的CarboSil中NO持续释放的机制是,溶解在聚合物基质中的SNAP分解并释放NO,主要在聚合物/溶液界面附近的富水区域中,而在本体聚合相中溶解的SNAP变为不饱和的,导致结晶的SNAP溶解在大部分聚合物中。这是一个非常缓慢的过程,最终导致在大于3周的生理通量水平下释放NO。 SNAP在CarboSil中的稳定性提高归因于结晶的SNAP分子之间的分子间氢键。该结晶在CarboSil聚合物中在37摄氏度下保持RSNO稳定性8个月以上(保持88.5%的残留量)方面也起着关键作用。此外,已证明用这种新材料制成的血管内导管可在7天的时间内显着减少金黄色葡萄球菌生物膜(医院血流感染的主要原因)的形成,并减少了5 log个单位的活细胞计数表面。还显示,与不使用SNAP制成的对照导管相比,NO释放导管可在兔子静脉植入7 h期间大大减少在导管表面上的血栓形成。这些结果表明,掺杂SNAP的CarboSil系统是一种非常有吸引力的新型复合材料,可用于制造具有增强的稳定性和生物相容性的长期NO释放医疗器械。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号