...
首页> 外文期刊>Biomaterials >Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo
【24h】

Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo

机译:纳米催化剂可促进变形链球菌生物膜基质降解并增强细菌杀伤力以抑制体内龋齿

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Dental biofilms (known as plaque) are notoriously difficult to remove or treat because the bacteria can be enmeshed in a protective extracellular matrix. It can also create highly acidic microenvironments that cause acid-dissolution of enamel-apatite on teeth, leading to the onset of dental caries. Current antimicrobial agents are incapable of disrupting the matrix and thereby fail to efficiently kill the microbes within plaque-biofilms. Here, we report a novel strategy to control plaque-biofilms using catalytic nanoparticles (CAT-NP) with peroxidase-like activity that trigger extracellular matrix degradation and cause bacterial death within acidic niches of caries-causing biofilm. CAT-NP containing biocompatible Fe3O4 were developed to catalyze H2O2 to generate free-radicals in situ that simultaneously degrade the biofilm matrix and rapidly kill the embedded bacteria with exceptional efficacy (>5-log reduction of cell viability). Moreover, it displays an additional property of reducing apatite demineralization in acidic conditions. Using 1-min topical daily treatments akin to a clinical situation, we demonstrate that CAT-NP in combination with H2O2 effectively suppress the onset and severity of dental caries while sparing normal tissues in vivo. Our results reveal the potential to exploit nanocatalysts with enzyme-like activity as a potent alternative approach for treatment of a prevalent biofilm-associated oral disease. (C) 2016 Elsevier Ltd. All rights reserved.
机译:众所周知,牙科生物膜(称为菌斑)难以去除或治疗,因为细菌可以被包裹在保护性细胞外基质中。它还会产生高酸性的微环境,导致牙釉质的磷灰石酸溶解,导致龋齿发作。当前的抗微生物剂不能破坏基质,从而不能有效地杀死噬菌斑生物膜内的微生物。在这里,我们报告了一种新的策略来控制斑块生物膜,它使用具有过氧化物酶样活性的催化纳米颗粒(CAT-NP)触发细胞外基质降解,并在引起龋齿的生物膜的酸性生态位内引起细菌死亡。含有CAT-NP的生物相容性Fe3O4被开发来催化H2O2原位产生自由基,该自由基同时降解生物膜基质并迅速杀死嵌入的细菌,并具有出色的功效(细胞活力降低了5对数)。而且,它显示出在酸性条件下减少磷灰石脱矿质的附加性能。使用类似于临床情况的1分钟局部每日治疗,我们证明CAT-NP与H2O2的结合可有效抑制龋齿的发作和严重程度,同时在体内保留正常组织。我们的研究结果揭示了利用具有酶样活性的纳米催化剂作为治疗普遍存在的生物膜相关口腔疾病的有效替代方法的潜力。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号