...
首页> 外文期刊>Biomaterials >Photopolymerized microfeatures for directed spiral ganglion neurite and Schwann cell growth
【24h】

Photopolymerized microfeatures for directed spiral ganglion neurite and Schwann cell growth

机译:定向螺旋神经节神经突和雪旺氏细胞生长的光聚合微特征

获取原文
获取原文并翻译 | 示例
           

摘要

Cochlear implants (CIs) provide auditory perception to individuals with severe hearing impairment. However, their ability to encode complex auditory stimuli is limited due, in part, to poor spatial resolution caused by electrical current spread in the inner ear. Directing nerve cell processes towards target electrodes may reduce the problematic current spread and improve stimulatory specificity. In this work, photopolymerization was used to fabricate micro- and nano-patterned methacrylate polymers to probe the extent of spiral ganglion neuron (SGN) neurite and Schwann cell (SGSC) contact guidance based on variations in substrate topographical cues. Micropatterned substrates are formed in a rapid, single-step reaction by selectively blocking light with photomasks which have parallel line-space gratings with periodicities of 10-100 μm. Channel amplitudes of 250 nm-10 μm are generated by modulating UV exposure time, light intensity, and photoinitiator concentration. Gradual transitions are observed between ridges and grooves using scanning electron and atomic force microscopy. The transitions stand in contrast to vertical features generated via etching lithographic techniques. Alignment of neural elements increases significantly with increasing feature amplitude and constant periodicity, as well as with decreasing periodicity and constant amplitude. SGN neurite alignment strongly correlates (r = 0.93) with maximum feature slope. Multiple neuronal and glial types orient to the patterns with varying degrees of alignment. This work presents a method to fabricate gradually-sloping micropatterns for cellular contact guidance studies and demonstrates spatial control of inner ear neural elements in response to micro- and nano-scale surface topography.
机译:人工耳蜗(CI)可为患有严重听力障碍的人提供听觉感知。但是,它们编码复杂的听觉刺激的能力受到限制,部分原因是由于内耳中的电流扩散导致空间分辨率差。将神经细胞过程引向目标电极可减少有问题的电流扩散并改善刺激特异性。在这项工作中,使用光聚合技术来制造微米和纳米图案的甲基丙烯酸酯聚合物,以根据基板地形线索的变化来探测螺旋神经节神经元(SGN)神经突和雪旺细胞(SGSC)接触向导的程度。通过用具有10-100μm周期的平行线间距光栅的光掩模选择性地阻挡光,可以快速,一步式反应形成微图案化基板。通过调节UV曝光时间,光强度和光引发剂浓度,可产生250 nm-10μm的通道振幅。使用扫描电子和原子力显微镜观察到的脊和凹槽之间的逐渐过渡。与通过蚀刻光刻技术产生的垂直特征形成对比。神经元素的对齐随着特征幅度和恒定周期的增加以及周期性和恒定幅度的减小而显着增加。 SGN神经突排列与最大特征斜率密切相关(r = 0.93)。多种神经元和神经胶质类型以不同程度的对齐方式定向于模式。这项工作提出了一种用于细胞接触指导研究的逐渐倾斜的微模式制作方法,并展示了响应于微米和纳米尺度表面形貌的内耳神经元的空间控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号