...
首页> 外文期刊>Combustion theory and modelling >Numerical study of the effects of gravity on soot formation in laminar coflow methane/air diffusion flames under different air stream velocities
【24h】

Numerical study of the effects of gravity on soot formation in laminar coflow methane/air diffusion flames under different air stream velocities

机译:不同气流速度下重力对层流共流甲烷/空气扩散火焰中烟尘形成影响的数值研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Numerical simulations of laminar coflow methane/air diffusion flames at atmospheric pressure and different gravity levels were conducted to gain a better understanding of the effects of gravity on soot formation by using relatively detailed gas-phase chemistry and complex thermal and transport properties coupled with a semi-empirical twoequation soot model. Thermal radiation was calculated using the discrete-ordinates method coupled with a non-grey model for the radiative properties of O, CO2, H2O, and soot. Calculations were conducted for three coflow air velocities of 77.6, 30, and 5 cm/s to investigate how the coflowing air velocity affects the flame structure and soot formation at different levels of gravity. The coflow air velocity has a rather significant effect on the streamwise velocity and the fluid parcel residence time, especially at reduced gravity levels. The flame height and the visible flame height in general increase with decreasing the gravity level. The peak flame temperature decreases with decreasing either the coflow air stream velocity or the gravity level. The peak ot volume fraction of the flame at microgravity can either be greater or less than that of its normal gravity counterpart, depending on the coflowair velocity.At sufficiently high coflowair velocity, the peak soot volume fraction increases with decreasing the gravity level. When the coflow air velocity is low enough, soot formation is greatly suppressed at microgravity and extinguishment occurs in the upper portion of the flame with soot emission from the tip of the flame owing to incomplete oxidation. The numerical results provide further insights into the intimate coupling between flame size, residence time, hermal radiation, and soot formation at reduced gravity level. The importance of thermal radiation heat transfer and coflow air velocity to the flame structure and soot formation at microgravity is demonstrated for the first time.
机译:通过在大气压力和不同重力水平下进行层流共流甲烷/空气扩散火焰的数值模拟,以通过使用相对详细的气相化学,复杂的热学和输运性质以及半导电性来更好地了解重力对烟灰形成的影响。 -经验二方程烟灰模型。使用离散坐标方法结合非灰色模型计算O,CO2,H2O和烟灰的辐射特性,计算热辐射。针对77.6、30和5 cm / s的三种同向风速进行了计算,以研究同向风速如何在不同的重力水平下影响火焰结构和烟灰形成。同流空气速度对气流速度和流体包裹的停留时间有相当大的影响,特别是在重力水平降低的情况下。通常,火焰高度和可见火焰高度随着重力水平的降低而增加。火焰峰值温度随同向气流速度或重力水平的降低而降低。在微重力下,火焰的峰值ot体积分数可以大于或小于正常重力下的峰值ot体积分数,这取决于同流空气速度。在足够高的同流空气速度下,峰值烟灰体积分数随重力水平的降低而增加。当同流空气速度足够低时,在微重力下大大抑制了烟灰的形成,并且由于不完全氧化,在火焰的上部发生了熄灭,并且烟灰从火焰的尖端散发出去。数值结果为降低重力水平下火焰尺寸,停留时间,放热和烟灰形成之间的紧密联系提供了进一步的见解。首次证明了热辐射传热和顺流风速对火焰结构和微重力下烟灰形成的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号