首页> 外文期刊>核医学 >The Evolution of Molecular Imaging Radiopharmaceuticals
【24h】

The Evolution of Molecular Imaging Radiopharmaceuticals

机译:分子成像放射性药物的发展

获取原文
获取原文并翻译 | 示例
           

摘要

Molecular imaging may be defined as the noninvasive imaging at the molecular level of biological function in the living subject. While molecular imaging by optical, US, CT and MRI are relatively recent developments, nuclear molecular imaging using radioactive tracers was in practice in the 1940's with ~(131)I iodide for thyroid targeting and in the 1950's with a variety of additional molecular imaging agents labeled usually with ~(131)I but also with ~(203)Hg, ~(198)Au, ~(133)Xe, etc.. This presentation will briefly describe the steady evolution of radiopharmaceuticals for nuclear molecular imaging to the present but emphasizing the early years. The pioneers developing molecular imaging radiopharmaceuticals, in addition to not having the benefit of our knowledge of molecular medicine or our access to animal models and imaging devices, were often medical doctors presumably with limited chemical expertise. Thus the earliest molecular imaging radiopharmaceuticals were often established drugs such as Hippuran, albumin, triiodothyronine, etc. that were then radiolabeled. The radionuclide of choice was almost always ~(131)I primarily because the chemistry of iodine is relatively simple, although there were a few exceptions such as ~(75)Se-selenomethionine. The introduction of metallic radionuclides had to wait until the mid to late 1960's in part because of availability but more because of a limited understanding of the complex chemistry of metals. Both conditions improved rapidly as ~(113m)In and then ~(111)In began to replace ~(131)I. This process dramatically accelerated with the introduction of ~(99m)Tc in 1960. The almost ideal imaging properties of this radionuclide encouraged both an accelerated investigation of technetium chemistry and the commercialization of the ~(99)Mo generator. Thus ~(99m)Tc labeled pyrophosphate/polyphosphates/ phosphonates replaced ~(18)F for bone imaging, the ~(99m)Tc labeled IDAs replaced ~(131)I-Rose Bengal for hepatobiliary imaging, ~(99m)Tc-DTPA replaced ~(131)I-Renografin for renography, etc. The appearance of positron emitting molecular imaging agents in the 1970's owes its genesis to hot atom chemists who turned their attention to radiopharmaceuticals and synthesized of a number of agents labeled with ~(11)C such as glucose and with ~(18)F such as FDG.
机译:分子成像可以被定义为在活受试者中在生物学功能的分子水平上的非侵入性成像。虽然通过光学,US,CT和MRI进行分子成像是相对较新的进展,但在1940年代,使用放射性示踪剂的核分子成像实际上是在甲状腺中以〜(131)I碘化物进行靶向的,而在1950年代则在实践中使用了多种其他分子成像剂。通常用〜(131)I标记,也可以用〜(203)Hg,〜(198)Au,〜(133)Xe等标记。本演示文稿将简要描述用于核分子成像的放射性药物的稳步发展,但是,强调早期。开发分子成像放射性药物的先驱者除了得不到我们对分子医学的知识或无法获得动物模型和成像设备的好处外,通常还认为他们的化学专业知识有限。因此,最早的分子成像放射性药物通常是成熟的药物,例如Hippuran,白蛋白,三碘甲腺氨酸等,然后进行放射性标记。选择放射性核素几乎总是〜(131)I,这主要是因为碘的化学性质相对简单,尽管有一些例外,例如〜(75)Se-硒代蛋氨酸。金属放射性核素的引入不得不等到1960年代中期到后期,部分原因是由于可获得性,而更多是因为对金属的复杂化学认识有限。随着〜(113m)In的出现,两种情况都迅速改善,然后〜(111)In开始取代〜(131)I。随着1960年〜(99m)Tc的引入,这一过程得到了极大的加速。这种放射性核素的近乎理想的成像特性既促进了investigation化学的快速研究,也推动了〜(99)Mo发生器的商业化。因此,〜(99m)Tc标记的焦磷酸盐/聚磷酸盐/膦酸酯替代了〜(18)F进行骨成像,〜(99m)Tc标记的IDA替换了〜(131)I-玫瑰孟加拉用于肝胆管成像,〜(99m)Tc-DTPA正电子发射分子显像剂在1970年代出现是由于热原子化学家将其注意力转移到放射性药物上,并合成了许多用〜(11)标记的药物,从而使正电子发射分子显像剂在1970年代出现。 C(例如葡萄糖)和〜(18)F(例如FDG)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号