首页> 外文期刊>Journal of the mechanical behavior of biomedical materials >Time-dependent evaluation of mechanical properties and in vitro cytocompatibility of experimental composite-based nerve guidance conduits.
【24h】

Time-dependent evaluation of mechanical properties and in vitro cytocompatibility of experimental composite-based nerve guidance conduits.

机译:基于时间的评估的机械性能和实验性基于复合材料的神经引导导管的体外细胞相容性。

获取原文
获取原文并翻译 | 示例
           

摘要

The use of nerve guidance conduits to repair peripheral nerve discontinuities has attracted much attention from the biomaterials community, with many resorbable and non-resorbable materials in clinical use. However, a material with ideal biocompatibility, sufficient mechanical properties (to match that of the regenerating nerve) coupled with a suitable degradation rate, has yet to be realized. Recently, potential solutions (composite nerve guidance conduits) which support the emerging philosophy of allowing synthetic materials to establish key interactions with cells in ways that encourage self-repair (i.e. ionic mediators of repair such as those observed in hard tissue regeneration) have been proposed in the literature; such composites comprise specially designed bioactive phosphate-free glasses embedded in degradable polymeric matrices. Whilst much research has focussed on the optimization of such composites, there is no published literature on the performance of these experimental compositions under simulated physiological conditions. To address this key limitation, this paper explores the time-dependent variations in wet-state mechanical properties (tensile modulus and ultimate tensile strength) for NGC composites containing various compositions of PLGA (at 12.5, and 20 wt%), F127 (at 0, 2.5 and 5 wt%) and various loadings of Si-Na-Ca-Zn-Ce glass (at 0 and 20 wt%). It was observed that Young's modulus and ultimate tensile strength of these composites were in the range 5-203 MPa and 1-7 MPa respectively, indicating comparable mechanical performance to clinical materials. Furthermore, an analysis of the cytocompatibility of experimental compositions showed comparable (in some instances superior), compatibility when compared with the commercial product Neurolac((R)). Based on current synthetic devices and the demands of the indication, the CNGCs examined in this work offer appropriate mechanical properties and compatibility to warrant enhanced development.
机译:使用神经引导导管修复周围神经不连续引起了生物材料界的广泛关注,临床上使用了许多可吸收和不可吸收的材料。然而,尚未实现具有理想生物相容性,足够的机械性能(以匹配再生神经的机械性能)以及合适的降解速率的材料。最近,已经提出了潜在的解决方案(复合神经引导导管),该解决方案支持新兴的哲学,即允许合成材料以鼓励自我修复的方式(即修复的离子介质,例如在硬组织再生中观察到的那些)与细胞建立关键的相互作用。在文学中这样的复合物包括专门设计的嵌入可降解聚合物基质中的无生物活性磷酸盐的玻璃。尽管许多研究集中在这种复合材料的优化上,但是没有公开的文献报道这些实验组合物在模拟生理条件下的性能。为了解决这一关键限制,本文探讨了含各种成分的PLGA(分别为12.5和20 wt%),F127(为0)的NGC复合材料的湿态力学性能(拉伸模量和极限拉伸强度)随时间的变化。分别为2.5和5 wt%)和各种含量的Si-Na-Ca-Zn-Ce玻璃(0和20 wt%)。观察到这些复合材料的杨氏模量和极限拉伸强度分别在5-203 MPa和1-7 MPa范围内,表明其机械性能与临床材料相当。此外,对实验组合物的细胞相容性的分析表明,与市售产品Neurolac相比,相容性相当(在某些情况下更好)。基于当前的合成装置和适应症的要求,在这项工作中检查过的CNGC具有适当的机械性能和相容性,可确保开发得到加强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号