...
首页> 外文期刊>Journal of pure and applied algebra >An effective algorithm for quantifier elimination over algebraically closed fields using straight line programs
【24h】

An effective algorithm for quantifier elimination over algebraically closed fields using straight line programs

机译:使用直线程序对代数封闭域进行量词消除的有效算法

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper we obtain an effective algorithm for quantifier elimination over algebraically closed fields: For every effective infinite integral domain k, closed under the extraction of pth roots when the characteristic p of k is positive, and every prenex formula phi with r blocks of quantifiers involving s polynomials F-1,...,F-s is an element of k[X-1,...,X-n] encoded in dense form, there exists a well-parallelizable algorithm without divisions whose output is a quantifier-free formula equivalent to phi. The sequential complexity of this algorithm is bounded by O(phi) + D-(O(n)r), where phi is the length of phi and D greater than or equal to n is an upper bound for 1 + Sigma(i=1)(s) degF(i), and the polynomials in the output are encoded by means of a straight line program. The complexity bound obtained is better than the bounds of the known elimination algorithms, which are of the type phi.D-ncr, where c greater than or equal to 2 is a constant. This becomes notorious when r = 1 (i.e., when there is only one block of quantifiers): the complexity bounds known up to now are not less than D-n2, while our bound is D-O(n). Moreover, in the particular case that there is only one block of existential quantifiers and the input polynomials are given by a straight line program, we construct an elimination algorithm with even better bounds which depend on the length of this straight line program: Given a formula of the type There Exists x(n - m + 1,...,) There Exists x(n): F-1(x(1),...,x(n)) = 0 boolean AND ... boolean AND F-s(x(1),...x(n)) = 0 boolean AND G(1) (x(1),..., x(n)) not equal 0 boolean AND ... boolean AND G(s') (x(1),..., x(n)) not equal 0 where F-1,..., F-s is an element of k[X-1,...,X-n] are polynomials whose degrees in the m variables Xn - m + 1,...,X-n are bounded by an integer d greater than or equal to m and G(1),...,G(s') is an element of k[X-1,...,X-n] are polynomials whose degrees in the same variables are bounded by an integer delta, this algorithm eliminates quantifiers in time L-2.(s.s'.delta)(O(1).)d(O(m)), where L is the length of the straight line program that encodes F-1,..., F-s, G(1),..., G(s'). Finally, we construct a fast algorithm to compute the Chow Form of an irreducible projective variety. The construction of all the algorithms mentioned above relies on a preprocessing whose cost exceedes the complexity classes considered (they are based on the construction of correct test sequences). In this sense, our algorithms are non-uniform but may be considered uniform as randomized algorithms (choosing the correct test sequences randomly). (C) 1998 Elsevier Science B.V. All rights reserved. [References: 41]
机译:在本文中,我们获得了一种有效的代数封闭域上的量词消除算法:对于每个有效无限积分域k,当k的特征p为正时,在pth根的提取下闭合,并且每个带有r个量词块的prenex公式phi涉及s多项式F-1,...,Fs是以密集形式编码的k [X-1,...,Xn]的元素,存在一种无除法的可很好并行化的算法,其输出是无量词的公式相当于phi。此算法的顺序复杂度受O( phi )+ D-(O(n)r)的限制,其中 phi 是phi的长度,D大于或等于n是1 +的上限Sigma(i = 1)(s)degF(i),输出中的多项式通过直线程序进行编码。所获得的复杂度界限优于已知消除算法的界限,后者的类型为 phi .D-ncr,其中c大于或等于2为常数。当r = 1时(即只有一个量词块时),这变得臭名昭著:到目前为止,已知的复杂度界限不小于D-n2,而我们的界限是D-O(n)。此外,在只有一个存在量词块且输入多项式由直线程序给出的特殊情况下,我们构造了一个消除算法,该算法的界限取决于该直线程序的长度,甚至更好:类型的存在x(n-m + 1,...,)那里x(n):F-1(x(1),...,x(n))= 0布尔AND ...布尔AND Fs(x(1),... x(n))= 0布尔AND G(1)(x(1),...,x(n))不等于0布尔AND ...布尔AND G(s')(x(1),...,x(n))不等于0,其中F-1,...,Fs是k [X-1,...,Xn]的元素m个变量Xn-m + 1,...,Xn中的次数由大于或等于m的整数d限定的多项式,并且G(1),...,G(s')是k的元素[X-1,...,Xn]是多项式,它们在相同变量中的度数以整数德尔塔为界,该算法消除了时间L-2。(s.s'.delta)(O(1)的量词。 )d(O(m)),其中L是编码F-1,...,Fs,G的直线程序的长度(1),...,G(s')。最后,我们构造了一种快速算法来计算不可归约投影变种的Chow形式。上面提到的所有算法的构建都依赖于预处理,该预处理的成本超过了所考虑的复杂性类别(它们基于正确测试序列的构建)。从这个意义上讲,我们的算法是不统一的,但可以视为统一的随机算法(随机选择正确的测试序列)。 (C)1998 Elsevier Science B.V.保留所有权利。 [参考:41]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号