...
首页> 外文期刊>Journal of Physics, D. Applied Physics: A Europhysics Journal >Temporal evolution of the temperature field in the beam interaction zone during laser material processing
【24h】

Temporal evolution of the temperature field in the beam interaction zone during laser material processing

机译:激光材料加工过程中光束相互作用区温度场的时间演变

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents a numerical simulation of the temperature field resulting from the impingement of a laser beam on a metal surface. The calculations were based on a hydrodynamic physical model of laser-material interaction, which includes the effect of evaporation recoil pressure on melt flow and the related convective heat transfer. The computations follow an experimentally verified physical model of melt hydrodynamics and the model of laser-induced evaporation developed by Anisimov. The simulations indicate that convective heat transfer which is induced by recoil pressure is significant for absorbed laser intensities from 0.5 MW cm~(-2) to 10 MW cm~(-2). This range corresponds to laser welding, cutting and drilling due to melt ejection (hydrodynamic drilling). The simulations also show that the motion of the melt from the centre of the beam interaction zone towards the periphery results in a secondary maxima in the temperature distribution, which in turn can lead to instability of the melt flow and temperature field fluctuations. The model also predicts that the cooling rate in and around the fusion zone is strongly influenced by the recoil-pressure-induced melt flow. At the centre of the beam interaction zone, the cooling rate is much higher (approx. 10 times), and at the periphery, much slower than predicted by a pure heat conduction model.
机译:本文介绍了激光束撞击金属表面后产生的温度场的数值模拟。计算基于激光与材料相互作用的流体力学模型,其中包括蒸发反冲压力对熔体流动和相关对流传热的影响。计算遵循实验验证的熔体流体动力学物理模型和Anisimov开发的激光诱导蒸发模型。仿真结果表明,反冲压力引起的对流换热对于0.5 MW cm〜(-2)到10 MW cm〜(-2)的吸收激光强度具有重要意义。此范围对应于由于熔体喷射而产生的激光焊接,切割和钻孔(流体动力学钻孔)。模拟还表明,熔体从射束相互作用区的中心向周边运动会导致温度分布出现二次最大值,进而导致熔体流动不稳定和温度场波动。该模型还预测,在反冲压力引起的熔体流动中,熔融区域内和周围的冷却速度会受到很大影响。在束相互作用区的中心,冷却速率要高得多(大约10倍),而在外围,则要慢于纯热传导模型所预测的速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号