首页> 外文期刊>Journal of Physics, D. Applied Physics: A Europhysics Journal >The influence of magnetic and physiological behaviour on the effectiveness of iron oxide nanoparticles for hyperthermia
【24h】

The influence of magnetic and physiological behaviour on the effectiveness of iron oxide nanoparticles for hyperthermia

机译:磁和生理行为对纳米氧化铁对热疗效果的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Magnetic nanoparticles are being developed for a wide range of biomedical applications. In particular, hyperthermia involves heating the magnetic nanoparticles through exposure to an alternating magnetic field. These materials offer the potential to selectively treat cancer by heating cancer tissue locally and at the cellular level. This may be a successful method if there are enough particles in a tumor possessing a sufficiently high specific absorption rate (SAR) to deposit heat quickly while minimizing thermal damage to surrounding tissue. High SAR magnetic nanoparticles have been developed and used in mouse models of cancer. The magnetic nanoparticles comprise iron oxide magnetic cores (mean core diameter of 50 nm) surrounded by a dextran layer shell for colloidal stability. In comparing two similar systems, the saturation magnetization is found to play a crucial role in determining the SAR, but is not the only factor of importance. (A difference in saturation magnetization of a factor of 1.5 yields a difference in SAR of a factor of 2.5 at 1080 Oe and 150 kHz.) Variations in the interactions due to differences in the dextran layer, as determined through neutron scattering, also play a role in the SAR. Once these nanoparticles are introduced into the tumor, their efficacy, with respect to tumor growth, is determined by the location of the nanoparticles within or near the tumor cells and the association of the nanoparticles with the delivered alternating magnetic field (AMF). This association (nanoparticle SAR and AMF) determines the amount of heat generated. In our setting, the heat generated and the time of heating (thermal dose) provides a tumor gross treatment response which correlates closely with that of conventional (non-nanoparticle) hyperthermia. This being said, it appears specific aspects of the nanoparticle hyperthermia cytopathology mechanism may be very different from that observed in conventional cancer treatment hyperthermia.
机译:磁性纳米颗粒正在被开发用于广泛的生物医学应用。特别地,热疗涉及通过暴露于交变磁场来加热磁性纳米颗粒。这些材料提供了通过局部加热癌组织并在细胞水平上选择性治疗癌症的潜力。如果肿瘤中具有足够高的比吸收率(SAR)的足够多的粒子可以快速沉积热量,同时又能最大程度地减少对周围组织的热损伤,则这可能是一种成功的方法。已经开发出高SAR磁性纳米粒子,并将其用于癌症小鼠模型。磁性纳米颗粒包括被葡聚糖层壳围绕的氧化铁磁芯(平均芯直径为50 nm),以实现胶体稳定性。在比较两个类似系统时,发现饱和磁化强度在确定SAR方面起着关键作用,但不是唯一重要的因素。 (在1080 Oe和150 kHz时,饱和磁化强度的差异为1.5,SAR的差异为2.5。)通过中子散射确定的葡聚糖层差异所引起的相互作用变化也起了作用。在特区发挥作用。一旦将这些纳米颗粒引入肿瘤中,它们关于肿瘤生长的功效就由纳米颗粒在肿瘤细胞内或附近的位置以及纳米颗粒与递送的交变磁场(AMF)的关联来确定。这种联系(纳米颗粒SAR和AMF)决定了产生的热量。在我们的环境中,产生的热量和加热时间(热剂量)提供了与常规(非纳米粒子)热疗密切相关的肿瘤总体治疗反应。话虽如此,看来纳米粒子热疗细胞病理学机制的特定方面可能与常规癌症治疗热疗中观察到的有很大不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号