...
首页> 外文期刊>Journal of Physics, D. Applied Physics: A Europhysics Journal >TRAPPING OF MICROMETRE AND SUB-MICROMETRE PARTICLES BY HIGH-FREQUENCY ELECTRIC FIELDS AND HYDRODYNAMIC FORCES
【24h】

TRAPPING OF MICROMETRE AND SUB-MICROMETRE PARTICLES BY HIGH-FREQUENCY ELECTRIC FIELDS AND HYDRODYNAMIC FORCES

机译:高频电场和水动力对微量和亚微量颗粒的俘获

获取原文
获取原文并翻译 | 示例
           

摘要

We demonstrate that micrometre and sub-micrometre particles can be trapped, aggregated and concentrated in planar quadrupole electrode configurations by positive and negative dielectrophoresis. For particles less than 1 mu m in diameter, concentration is driven by thermal gradients, hydrodynamic effects and sedimentation forces. Liquid streaming is induced by the AC field itself via local heating and results, under special conditions, in vortices which improve the trapping efficiency. Microstructures were fabricated by electron-beam lithography and modified by UV laser ablation. They had typical gap dimensions between 500 nm and several micrometres. The theoretical and experimental results illustrate the basic principles of particle behaviour in ultra-miniaturized field traps filled with aqueous solutions. The smallest single particle that we could stably trap was a Latex bead of 650 nm. The smallest particles which were concentrated in the central part of the field trap were 14 nm in diameter. At high frequencies (in the megahertz range), field strengths up to 56 MV m(-1) can be applied in the narrow gaps of 500 nm. Further perspectives for microparticle and macromolecular trapping are discussed. [References: 23]
机译:我们证明,可以通过正和负介电电泳捕获,聚集和集中在平面四极电极配置中的微米和亚微米粒子。对于直径小于1微米的颗粒,浓度是由热梯度,流体动力效应和沉降力驱动的。交流电场本身通过局部加热引起液体流动,并在特殊条件下形成涡流,从而提高了捕集效率。通过电子束光刻制造微结构,并通过紫外激光烧蚀对其进行改性。它们的典型间隙尺寸在500 nm和几微米之间。理论和实验结果说明了在充满水溶液的超小型场阱中颗粒行为的基本原理。我们可以稳定捕获的最小单个颗粒是650 nm的乳胶珠。集中在场阱中心部分的最小颗粒直径为14 nm。在高频(兆赫兹范围内)下,可以在500 nm的狭窄间隙中施加高达56 MV m(-1)的场强。讨论了微粒和大分子捕集的其他观点。 [参考:23]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号