...
首页> 外文期刊>Journal of Physics, B. Atomic, Molecular and Optical Physics: An Institute of Physics Journal >Exploring biorthonormal transformations of pair-correlation functions in atomic structure variational calculations
【24h】

Exploring biorthonormal transformations of pair-correlation functions in atomic structure variational calculations

机译:在原子结构变分计算中探索对相关函数的双正交变换

获取原文
获取原文并翻译 | 示例
           

摘要

Multiconfiguration expansions frequently target valence correlation and correlation between valence electrons and the outermost core electrons. Correlation within the core is often neglected. A large orbital basis is needed to saturate both the valence and core–valence correlation effects. This in turn leads to huge numbers of configuration state functions (CSFs), many of which are unimportant. To avoid the problems inherent to the use of a single common orthonormal orbital basis for all correlation effects in the multiconfiguration Hartree–Fock (MCHF) method, we propose to optimize independent MCHF pair-correlation functions (PCFs), bringing their own orthonormal one-electron basis. Each PCF is generated by allowing single- and double-excitations from a multireference (MR) function. This computational scheme has the advantage of using targeted and optimally localized orbital sets for each PCF. These pair-correlation functions are coupled together and with each component of the MR space through a low dimension generalized eigenvalue problem. Nonorthogonal orbital sets being involved, the interaction and overlap matrices are built using biorthonormal transformation of the coupled basis sets followed by a counter-transformation of the PCF expansions. Applied to the ground state of beryllium, the new method gives total energies that are lower than the ones from traditional complete active space (CAS)-MCHF calculations using large orbital active sets. It is fair to say that we now have the possibility to account for, in a balanced way, correlation deep down in the atomic core in variational calculations.
机译:多构型扩展经常以价电子相关性和价电子与最外层核心电子之间的相关性为目标。核心内的相关性通常被忽略。需要一个大的轨道基础来使化合价和核心-化合相关效应都饱和。反过来,这导致了大量的配置状态功能(CSF),其中许多都不重要。为避免在多配置Hartree-Fock(MCHF)方法中为所有相关效应使用单个通用正交轨道基础所固有的问题,我们建议优化独立的MCHF对相关函数(PCF),使它们自己的正交一电子基础。每个PCF通过允许来自多参考(MR)函数的单激发和双激发来生成。该计算方案的优点是为每个PCF使用有针对性的最佳局部轨道集。这些对相关函数通过低维广义特征值问题与MR空间的每个组件耦合在一起。涉及非正交轨道集,使用耦合基集的正交正交变换,然后进行PCF展开的反变换,建立相互作用和重叠矩阵。将这种新方法应用于铍的基态后,其总能量要低于使用大型轨道活动集的传统完整活动空间(CAS)-MCHF计算得出的能量。可以公平地说,我们现在有可能以平衡的方式考虑变分计算中原子核深处的相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号