首页> 外文期刊>Journal of molecular modeling >Different proton transfer channels for the transformation of zwitterionic alanine–(H_2O)_n=2-4 to nonzwitterionic alanine–(H_2O)_n=2-4: a density functional theory study
【24h】

Different proton transfer channels for the transformation of zwitterionic alanine–(H_2O)_n=2-4 to nonzwitterionic alanine–(H_2O)_n=2-4: a density functional theory study

机译:两性离子丙氨酸–(H_2O)_n = 2-4转化为非两性离子丙氨酸–(H_2O)_n = 2-4的不同质子传递通道:密度泛函理论研究

获取原文
获取原文并翻译 | 示例
           

摘要

We report here the various possibilities of proton transfer between the zwitterionic and the non-zwetterionic form of alanine (Ala) via (H_2O)_n=2?4 clusters by calculating the transition state structures of zwitterionic alanine (ZAla)–(H_2O)_n=2?4 and non-zwitterionic alanine (Ala)–(H_2O)_n=2?4 complexes at B3LYP/6-311++G(d,p) and CAM-B3LYP/6-311++G(d,p) level of theory. In order to determine the most feasible channel for proton transfer, the barrier energy corresponding to each channel was calculated. For the transformation of ZAla–(H_2O)_n=2 to Ala–(H_2O)_n=2, we identified eight channels for proton transfer. The lowest barrier energy (2.57 kcal mol~(?1)) channel, where ZAla–(H_2O)_n=2 transforms to Ala–(H_2O)_n=2 via triple proton transfer, is said to be the energetically most feasible channel. The values of barrier energy corresponding to the least energy pathway for proton transfer were calculated to be 1.14 and 9.82 kcal mol~(?1) for n=3 and n=4 complexes, respectively, at B3LYP/6-311++G(d,p) level of theory. For complex n=3, the structure where proton transfer takes place directly from ?NH_3~+ to ?COO~? has the lowest energy pathway. However, the complexes for n=2 and 3—the channels where proton transferred from ?NH_3~+ to ?COO~? via two watermolecules have the lowest barrier energy. For each n, the values of barrier energy calculated at CAM-B3LYP/6-311++G(d,p) level of theory were always less compared those calculated at B3LYP/6-311++G(d,p) level of theory. The value of rate constants corresponding to each proton transfer channel was also calculated.
机译:我们在此报告通过计算两性离子丙氨酸(ZAla)–(H_2O)_n的过渡态结构,通过(H_2O)_n = 2?4团簇在两性离子形式和非两性离子形式的丙氨酸(Ala)之间进行质子转移的各种可能性。 = 2?4和非两性离子丙氨酸(Ala)–(H_2O)_n = 2?4在B3LYP / 6-311 ++ G(d,p)和CAM-B3LYP / 6-311 ++ G(d, p)理论水平。为了确定最可行的质子转移通道,计算了每个通道对应的势垒能量。对于ZAla–(H_2O)_n = 2到Ala–(H_2O)_n = 2的转换,我们确定了八个质子传递通道。最低的势垒能量(2.57 kcal mol〜(?1))通道是能量上最可行的通道,其中ZAla–(H_2O)_n = 2通过三重质子转移转换为Ala–(H_2O)_n = 2。在B3LYP / 6-311 ++ G( d,p)理论水平。对于复数n = 3,质子转移直接从?NH_3〜+发生到?COO〜?的结构。具有最低的能量路径。但是,n = 2和3的复合物-质子从?NH_3〜+转移到?COO〜?的通道。通过两个水分子具有最低的势垒能量。对于每个n,在CAM-B3LYP / 6-311 ++ G(d,p)水平上计算出的势垒能量值始终小于在B3LYP / 6-311 ++ G(d,p)水平上计算出的势垒能量值。理论。还计算了对应于每个质子传递通道的速率常数的值。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号