首页> 外文期刊>Journal of natural gas science and engineering >Development of natural gas flow rate in pipeline networks based on unsteady state Weymouth equation
【24h】

Development of natural gas flow rate in pipeline networks based on unsteady state Weymouth equation

机译:基于非稳态韦茅斯方程的管网天然气流量的发展。

获取原文
获取原文并翻译 | 示例
           

摘要

The lack of attention to unsteady state condition in pipeline networks results a considerable error for gas researchers. Our work aims to fill this gap for pipeline networks in series, parallel and looped based on unsteady Weymouth equation. For this, we introduced "Gain Coefficient" as the scale of gas flow increases in pipelines. Our results showed the gain coefficient for steady flow in series was a function of diameter and length ratios (D-2/D-1, L-1/L). The value of gain coefficient for unsteady flow closes to steady flow in series until it reaches to 1.97 after 500 h for L-1/L = 0.25 and D-2/D-1 = 2.5. Based on our development, the gain coefficient just was a function of diameter ratio for steady flow in parallel systems. According to our results, the value of gain coefficient for unsteady flow tends towards steady flow in parallel until it reaches to 12.50 for ratio of diameters equal 2.5 after 4000 h. For looped systems, fractions of looping and diameter ratio were main parameters of gain coefficient. Also, for all diameter ratios, a significant growth occurs in gain coefficient for unsteady flow when fraction of looping exceeds from 0.75. Based on our results, for fraction of looping equal to 0.75, gain coefficients for steady and unsteady flows converged to 1.94 for diameter ratio equal to 2.5 after 200 h. From our results, parallel system has a considerable preference in comparison with series and looped systems, but, it needs a large amount of cost. This paper as a basic report tries to help engineers of gas industry to design more accurate gas pipeline networks. (C) 2016 Elsevier B.V. All rights reserved.
机译:管道网络缺乏对非稳态条件的关注,对天然气研究人员造成了相当大的错误。我们的工作旨在基于不稳定的韦茅斯方程,为串联,并联和循环的管道网络填补这一空白。为此,随着管道中气体流量的增加,我们引入了“增益系数”。我们的结果表明,串联稳定流的增益系数是直径和长度比(D-2 / D-1,L-1 / L)的函数。对于L-1 / L = 0.25和D-2 / D-1 = 2.5,非恒定流的增益系数值接近于串联的恒定流,直到500小时后达到1.97。根据我们的发展,增益系数只是平行系统中稳定流动的直径比的函数。根据我们的结果,非恒定流的增益系数值趋于平行于稳定流,直到4000小时后直径比为2.5的值达到12.50。对于环形系统,环形比和直径比是增益系数的主要参数。同样,对于所有直径比,当循环的分数超过0.75时,非稳定流量的增益系数都会显着增长。根据我们的结果,对于循环分数等于0.75的情况,在200小时后,对于直径比等于2.5的稳态和非稳态流的增益系数收敛至1.94。从我们的结果来看,与串联和循环系统相比,并联系统具有很大的优势,但它需要大量的成本。本文作为基本报告试图帮助天然气行业的工程师设计更准确的天然气管道网络。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号