首页> 外文期刊>Journal of Materials Chemistry, C. materials for optical and electronic devices >Plasmonic-enhanced polymer photovoltaic cells based on Au nanoparticles with wide absorption spectra of 300-1000 nm
【24h】

Plasmonic-enhanced polymer photovoltaic cells based on Au nanoparticles with wide absorption spectra of 300-1000 nm

机译:基于金纳米粒子的等离子增强聚合物光伏电池,具有300-1000 nm的宽吸收光谱

获取原文
获取原文并翻译 | 示例
           

摘要

Bone-like Au nanoparticles (NPs) along with a small number of by-products of nanorods, nanocubes and other irregular shapes were synthesized using a seed-mediated growth approach. The mixed Au NPs generate a very wide absorption spectra of 300-1000 nm with three main absorption peaks at 520, 600, and 770 nm, extending to the main absorption, cut-off and transparence region of the poly-(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C_(61)-butyric acid methylester (PCBM) active layer. The mixed Au NPs were attached onto the ITO anode via a self-assembly method, and then P3HT:PCBM-based polymer photovoltaic cells (OPVs) were fabricated. The short-circuit current density and power conversion efficiency are significantly enhanced by 18.6% and 24.2% respectively, accompanied by the optimization of NPs distribution density. Optical, electrical, and morphological changes with the incorporation of Au NPs in the cells were thoroughly analyzed, and the results demonstrated that the cell performance improvement is mainly attributed to a synergistic reaction, including both the localized surface plasmon resonance- and scattering-induced absorption enhancement of the active layer, Au NPs-induced hole extraction ability enhancement, and large interface roughness-induced efficient exciton dissociation and hole collection.
机译:使用种子介导的生长方法合成了骨状金纳米颗粒(NPs)以及少量的纳米棒,纳米立方体和其他不规则形状的副产物。混合的金纳米颗粒产生300-1000 nm的非常宽的吸收光谱,在520、600和770 nm处具有三个主要吸收峰,延伸到聚(3-己基噻吩)的主要吸收,截止和透明区域(P3HT)和[6,6]-苯基-C_(61)-丁酸甲酯(PCBM)活性层。混合的金纳米颗粒通过自组装方法附着到ITO阳极上,然后制造基于P3HT:PCBM的聚合物光伏电池(OPV)。伴随着NPs分布密度的优化,短路电流密度和功率转换效率分别显着提高了18.6%和24.2%。彻底分析了在细胞中掺入金纳米颗粒后的光学,电学和形态学变化,结果表明,细胞性能的提高主要归因于协同反应,包括局部表面等离子体激元共振和散射诱导的吸收增强活性层,增强金纳米颗粒诱导的空穴提取能力,以及大界面粗糙度诱导的有效激子离解和空穴收集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号