首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Architecting smart 'umbrella' Bi2S3/rGO-modified TiO2 nanorod array structures at the nanoscale for efficient photoelectrocatalysis under visible light
【24h】

Architecting smart 'umbrella' Bi2S3/rGO-modified TiO2 nanorod array structures at the nanoscale for efficient photoelectrocatalysis under visible light

机译:在纳米尺度上构建智能的“伞状” Bi2S3 / rGO修饰的TiO2纳米棒阵列结构,以在可见光下进行有效的光电催化

获取原文
获取原文并翻译 | 示例
           

摘要

Photoelectrochemical water splitting to produce hydrogen under visible light has received intensive research interest but encounters significant scientific challenges. Sulphides have higher conduction band positions for H+ reduction and better sunlight absorption compared to oxides. CdS is the best candidate material, but its fatal toxicity from Cd makes it impossible to use for practical applications. Bi2S3 is non-toxic and has high absorption. However, Bi2S3 sensitized-TiO2 photoanodes have never been studied under visible light. In addition, although surface heterojunction using graphene as an electron mediator on an array structure has been studied to improve electron-hole separation, the achieved photoconversion efficiency is still low. Herein, for the first time, by physically architecting a nanostructure with delicately tailored chemistry, we demonstrate a novel "umbrella" hybrid (Bi2S3/rGO)(5)/TiO2 nanorod array (NR) structure, in which the multi-layered Bi2S3/rGO umbrella cover not only significantly enhances the light absorption efficiency, but also by electrically connecting with Bi2S3-modified TiO2 NRs creates a stepwise band-edge structure to accelerate the photo-generated electrons transport rate from Bi2S3 to TiO2 through rGO while generating a higher resistance to inhibit charge back recombination. This nanostructure achieves considerably higher efficiency than all various control structures under visible light by similar to 4-5 times. This work not only demonstrates an innovative approach to construct a smart architecture at the nanoscale for an efficient practical water splitting device, but also offers scientific insights.
机译:在可见光下光电化学分解水产生氢的研究兴趣很大,但面临重大的科学挑战。与氧化物相比,硫化物具有更高的导带位置以减少H +和更好的日光吸收。 CdS是最好的候选材料,但是Cd的致命毒性使其无法用于实际应用。 Bi2S3无毒且吸收率高。但是,从未在可见光下研究过Bi2S3敏化的TiO2光电阳极。另外,尽管已经研究了在阵列结构上使用石墨烯作为电子介体的表面异质结以改善电子-空穴分离,但是所获得的光转换效率仍然较低。在此,我们首次通过物理构建具有精细定制化学特性的纳米结构,展示了一种新颖的“伞状”杂物(Bi2S3 / rGO)(5)/ TiO2纳米棒阵列(NR)结构,其中多层Bi2S3 / rGO雨伞罩不仅显着提高了光吸收效率,而且还通过与Bi2S3改性的TiO2 NRs电连接而形成了阶梯状的带状边缘结构,从而加快了光生电子通过rGO从Bi2S3到TiO2的传输速度,同时产生了更高的电阻抑制电荷回重组。在可见光下,该纳米结构比所有各种控制结构的效率高出4到5倍。这项工作不仅展示了一种创新的方法,可以在纳米规模上构建一种高效实用的水分解装置的智能体系结构,而且还提供了科学见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号