首页> 外文期刊>Journal of Molecular Biology >Engineering activity and stability of Thermotoga maritima glutamate dehydrogenase. II: construction of a 16-residue ion-pair network at the subunit interface.
【24h】

Engineering activity and stability of Thermotoga maritima glutamate dehydrogenase. II: construction of a 16-residue ion-pair network at the subunit interface.

机译:Maritoma maritima谷氨酸脱氢酶的工程活性和稳定性。 II:在亚基界面处构建16个残基的离子对网络。

获取原文
获取原文并翻译 | 示例
           

摘要

The role of an 18-residue ion-pair network, that is present in the glutamate dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus, in conferring stability to other, less stable homologous enzymes, has been studied by introducing four new charged amino acid residues into the subunit interface of glutamate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima. These two GDHs are 55 % identical in amino acid sequence, differ greatly in thermo-activity and stability and derive from microbes with different phylogenetic positions. Amino acid substitutions were introduced as single mutations as well as in several combinations. Elucidation of the crystal structure of the quadruple mutant S128R/T158E/N117R/S160E T. maritima glutamate dehydrogenase showed that all anticipated ion-pairs are formed and that a 16-residue ion-pair network is present. Enlargement of existing networks by single amino acid substitutions unexpectedly resulted in a decrease in resistance towards thermal inactivation and thermal denaturation. However, combination of destabilizing single mutations in most cases restored stability, indicating the need for balanced charges at subunit interfaces and high cooperativity between the different members of the network. Combination of the three destabilizing mutations in triple mutant S128R/T158E/N117R resulted in an enzyme with a 30 minutes longer half-life of inactivation at 85 degrees C, a 3 degrees C higher temperature optimum for catalysis, and a 0.5 degrees C higher apparent melting temperature than that of wild-type glutamate dehydrogenase. These findings confirm the hypothesis that large ion-pair networks do indeed stabilize enzymes from hyperthermophilic organisms. Copyright 1999 Academic Press.
机译:通过将四个新的带电荷氨基酸残基引入到超嗜热古菌激烈热球菌的谷氨酸脱氢酶中,存在一个18个残基的离子对网络,从而赋予其他不稳定度较低的同源酶以稳定性,这一作用已经存在。嗜热菌Maritoma的谷氨酸脱氢酶的亚基界面。这两个GDH在氨基酸序列上具有55%的相同性,在热活性和稳定性方面相差很大,并且来源于具有不同系统发生位置的微生物。氨基酸取代是作为单个突变以及几种组合引入的。对四倍体突变体S128R / T158E / N117R / S160E maritima谷氨酸脱氢酶的晶体结构的阐明表明,所有预期的离子对均已形成,并且存在16个残基的离子对网络。通过单个氨基酸取代扩大现有网络,出乎意料地导致了对热失活和热变性的抗性降低。但是,在大多数情况下,不稳定的单个突变的组合可以恢复稳定性,这表明需要在亚基界面处平衡电荷,并需要网络中不同成员之间具有较高的协同性。三重突变体S128R / T158E / N117R中三个不稳定突变的组合产生的酶在85摄氏度下具有更长的30分钟灭活半衰期,3摄氏度的最佳催化最佳温度和0.5摄氏度的明显表观温度熔解温度比野生型谷氨酸脱氢酶高。这些发现证实了这样的假设,即大型离子对网络确实可以稳定来自超嗜热生物的酶。版权所有1999,学术出版社。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号