...
首页> 外文期刊>Journal of Modern Optics >Subwavelength focusing of laser light by microoptics
【24h】

Subwavelength focusing of laser light by microoptics

机译:通过微光学对激光进行亚波长聚焦

获取原文
获取原文并翻译 | 示例
           

摘要

Near-field scanning optical microscope (NSOM) measurements revealed that a linearly polarized Gaussian beam of wavelength λ = 532 nm focused with a binary zone plate (ZP) of focal length λ, radius 7 μm, and groove depth 510 nm, fabricated in hydrogen silsesquioxane, produces a focal spot of size FWHM = (0.44 ± 0.02)λ, with the side lobes being lower than 10% of the intensity peak in the focus. Replacing the incident 532 nm wavelength with a 633 nm wavelength resulted in a 1.8 times shorter focal length and a tighter (in terms of wavelengths) focal spot of FWHM = (0.40 ± 0.02)λ. This value is smaller than the scalar diffraction-limited size in vacuum, FWHM = 0.51λ. This is the smallest focal spot so far experimentally obtained for a binary phase ZP and the root-mean-square deviation of the experimental curve from a FDTD simulation is 5%. We show that the metallic pyramid-shaped cantilever with a 100-nm-hole in the tip that is used in the NSOM is only able to detect the transverse electric field component. The FDTD simulation showed such a cantilever to be over 3 times more sensitive to the transverse electric field component than to the longitudinal one. Using the Richards-Wolf (RW) formulae, the near-focus intensity distribution can be calculated with 6% error for focal lengths larger than 4λ. It is usually assumed that the Debye theory and the RW formulae are only valid for focal lengths much larger than the incident wavelength. By FDTD simulation, we showed that when illuminating the ZP by a radially (rather than linearly) polarized beam, a decrease in the focal spot transverse size did not result in a substantially reduced total volume of focus (4%).
机译:近场扫描光学显微镜(NSOM)测量表明,波长为λ= 532 nm的线偏振高斯光束聚焦在焦距为λ,半径为7μm,槽深为510 nm的二元波带片(ZP)中,并用氢气制造倍半硅氧烷产生的焦点大小为FWHM =(0.44±0.02)λ,旁瓣低于焦点处强度峰值的10%。将入射的532 nm波长替换为633 nm波长会导致焦距缩短1.8倍,并且聚焦点更窄(在波长方面),FWHM =(0.40±0.02)λ。该值小于真空中标量衍射极限的大小,FWHM =0.51λ。这是迄今为止通过实验获得的针对二元相ZP的最小焦点,实验曲线与FDTD仿真的均方根偏差为5%。我们显示,用于NSOM的尖端具有100 nm孔的金属金字塔形悬臂只能检测横向电场分量。 FDTD仿真显示,这种悬臂对横向电场分量的敏感度是对纵向电场的敏感度的3倍以上。使用Richards-Wolf(RW)公式,对于大于4λ的焦距,可以计算出具有6%误差的近焦点强度分布。通常假定Debye理论和RW公式仅对远大于入射波长的焦距有效。通过FDTD模拟,我们显示,当通过径向(而不是线性)偏振光束照亮ZP时,焦斑横向尺寸的减小不会导致焦点的总体积大大减少(4%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号