首页> 外文期刊>Journal of Macromolecular Science. Pure and Applied Chemistry >Thermal degradation behavior and kinetic analysis of ultra high molecular weight polyethylene based multi-walled carbon nanotube nanocomposites prepared via in-situ polymerization
【24h】

Thermal degradation behavior and kinetic analysis of ultra high molecular weight polyethylene based multi-walled carbon nanotube nanocomposites prepared via in-situ polymerization

机译:原位聚合制备超高分子量聚乙烯基多壁碳纳米管纳米复合材料的热降解行为和动力学分析

获取原文
获取原文并翻译 | 示例
           

摘要

Thermal degradation behavior of multi-wall carbon nanotubes (MWCNTs)/ultra high molecular weight polyethylene (UHMWPE) nanocomposites, with different nanotubes contents (0.5, 1.5 and 3.5 wt%) prepared via in-situ polymerization technique have been investigated using thermal gravimetric analysis (TGA). TGA spectra revealed that these nanocomposites had enhanced thermal stability and no significant mass loss (<0.4 wt%) occurred up to 350°C. Thermal degradation of these UHMWPE/MWCNT nanocomposites was investigated in terms of parameters such as the onset temperature of degradation (T _(10)), the decomposition temperature at 50% wt loss (T _(50)), the degradation temperature of maximum rate of the weight loss (T _m), and the residual yields (W _R) from TGA. The degradation activation energies (E) of virgin UHMWPE and its nanocomposites were estimated using the Friedman, the Ozawa, Flynn, and Wall (OFW), and the Kissinger's methods. Results indicated that the degradation activation energy for the virgin UHMWPE was 281.3 kJ/mol. The activation energy increased with increasing nanotube loading up to 1.5 wt% indicating that MWCNTs had a stabilizing effect on the degradation of the matrix. However, loadings of 3.5 wt% of nanotube or more could slightly decrease the activation energy. The decrease in the activation energy for degradation of nanocomposites with higher MWCNT concentrations might be attributed to the catalytic effects of nanotubes and polymerization catalyst residues. The model fitting method indicated a mechanism of n ~(th)-order auto-catalysis from the form of the conversion curves for UHMWPE/MWCNTs nanocomposites prepared via in-situ polymerization.
机译:利用热重量分析法研究了通过原位聚合技术制备的具有不同纳米管含量(0.5、1.5和3.5 wt%)的多壁碳纳米管(MWCNTs)/超高分子量聚乙烯(UHMWPE)纳米复合材料的热降解行为。 (TGA)。 TGA光谱表明,这些纳米复合材料具有增强的热稳定性,并且在最高350°C时未发生明显的质量损失(<0.4 wt%)。根据降解起始温度(T _(10)),50%wt损失时的分解温度(T _(50)),最大降解温度等参数研究了这些UHMWPE / MWCNT纳米复合材料的热降解。重量损失率(T _m)以及TGA的剩余产量(W _R)。使用弗里德曼(Friedman),小泽(Ozawa),弗林(Flynn)和沃尔(Wall)和基辛格(Kissinger)方法估算了原始UHMWPE及其纳米复合材料的降解活化能(E)。结果表明,原始UHMWPE的降解活化能为281.3 kJ / mol。活化能随着纳米管负载增加至1.5 wt%而增加,这表明MWCNTs对基质的降解具有稳定作用。然而,纳米管的含量为3.5wt%或更多会稍微降低活化能。 MWCNT浓度较高的纳米复合材料降解时活化能的降低可能归因于纳米管和聚合催化剂残留物的催化作用。模型拟合方法从通过原位聚合制备的UHMWPE / MWCNTs纳米复合材料的转化曲线的形式表明了n〜(th)级自动催化的机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号