首页> 外文期刊>Journal of Low Power Electronics >Cell Design Methodology Based on Transmission Gate for Low-Power High-Speed Balanced XOR-XNOR Circuits in Hybrid-CMOS Logic Style
【24h】

Cell Design Methodology Based on Transmission Gate for Low-Power High-Speed Balanced XOR-XNOR Circuits in Hybrid-CMOS Logic Style

机译:基于传输门的混合CMOS逻辑低功耗高速平衡XOR-XNOR电路的单元设计方法

获取原文
获取原文并翻译 | 示例
       

摘要

In this paper, we propose a systematic design methodology based on transmission gate in the category of hybrid-CMOS Logic style. We start by with selecting a basic cell including two independent inputs and two complementary outputs. Next, we combine this basic cell with various correction techniques to build a perfect XOR-XNOR circuit. Cell design Methodology based on pass transistor has been previously published. Using transmission gate in the basic cells, in addition to providing Full-Swing outputs, increases circuit driving capability and eliminates needing for optimization techniques. Full-Swing outputs as an important factor in arithmetic circuit basic block design impact multi-stage structured arithmetic circuit performance. We have introduced six new balanced XOR-XNOR circuits in this paper. All of the proposed circuits successfully operate at low voltages with excellent signal integrity and driving capability. Afterwards five new full adders based on the novel XOR-XNOR circuits that generate XOR and XNOR full-swing outputs simultaneously have been proposed. All simulations have been performed with TSMC 0.13-μm using HSpice to achieve the minimum power and power-delay product (PDP). To evaluate the performance of the XOR/XNOR circuits in a real circuit, we have embedded them in individual, chain, tree structured and compressor 5:2 as test benches. Simulation results show that the proposed circuits exhibit better performances compared to previously suggested circuits. The savings range in the PDP from 23% to 56% and in power from 20% to 27% for more realistic test benches.
机译:在本文中,我们提出了一种基于传输门的系统设计方法,属于混合CMOS逻辑样式。我们首先选择一个包含两个独立输入和两个互补输出的基本单元。接下来,我们将此基本单元与各种校正技术结合起来,以构建理想的XOR-XNOR电路。先前已经发布了基于传输晶体管的电池设计方法论。在基本单元中使用传输门,除了提供全摆幅输出外,还提高了电路驱动能力,并且无需优化技术。全摆幅输出是算术电路基本模块设计中的重要因素,会影响多级结构化算术电路的性能。在本文中,我们介绍了六个新的平衡XOR-XNOR电路。所有提出的电路均能在低压下成功运行,并具有出色的信号完整性和驱动能力。然后,提出了基于新颖的XOR-XNOR电路的五个新的全加法器,它们同时产生XOR和XNOR全摆幅输出。使用HSpice对台积电0.13-μm进行了所有仿真,以实现最小功率和功率延迟乘积(PDP)。为了评估实际电路中XOR / XNOR电路的性能,我们将它们嵌入到单独的,链式,树型结构和压缩器5:2中作为测试平台。仿真结果表明,与以前提出的电路相比,提出的电路表现出更好的性能。对于更现实的测试台,PDP的节省范围为23%至56%,功率的节省范围为20%至27%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号