...
首页> 外文期刊>Journal of manufacturing science and engineering: Transactions of the ASME >Identification of Material Constitutive Laws for Machining-Part I: An Analytical Model Describing the Stress, Strain, Strain Rate, and Temperature Fields in the Primary Shear Zone in Orthogonal Metal Cutting
【24h】

Identification of Material Constitutive Laws for Machining-Part I: An Analytical Model Describing the Stress, Strain, Strain Rate, and Temperature Fields in the Primary Shear Zone in Orthogonal Metal Cutting

机译:加工材料本构定律的确定-第一部分:描述正交金属切削主剪切区中应力,应变,应变速率和温度场的分析模型

获取原文
获取原文并翻译 | 示例
           

摘要

To achieve high performance machining, modeling of the cutting process is necessary to predict cutting forces, residual stresses, tool wear, and burr formation. A major difficulty in the modeling of the cutting process is the description of the material constitutive law to reflect the severe plastic deformation encountered in the primary and the secondary deformation zones under high strains, strain rates, and temperatures. A critical literature review shows that the available methods to identify the material constitutive equation for the cutting process may lead to significant errors due to their limitations. To overcome these limitations, a novel methodology is developed in this study. Through conceptual considerations and finite element simulations, the characteristics of the stress, strain, strain rate, and temperature fields in the primary shear zone were established. Using this information and applying the principles of the theory of plasticity, heat transfer, and mechanics of the orthogonal metal cutting, a new distributed primary zone deformation model is developed to describe the distributions of the effective stress, effective strain, effective strain rate, and temperature in the primary shear zone. This analytical model is assessed by comparing its predictions with finite element simulation results under a wide range of cutting conditions using different materials. Experimental validation of this model will be presented in Part II of this study.
机译:为了实现高性能加工,必须对切削过程进行建模以预测切削力,残余应力,工具磨损和毛刺形成。切削过程建模的一个主要困难是描述材料的本构定律,以反映在高应变,应变率和温度下在一次和二次变形区遇到的严重塑性变形。一篇重要的文献综述表明,由于其局限性,用于识别切削过程中材料本构方程的可用方法可能会导致重大错误。为了克服这些局限性,本研究开发了一种新颖的方法。通过概念上的考虑和有限元模拟,建立了主剪切区的应力,应变,应变率和温度场的特征。利用这些信息并应用可塑性,热传递和正交金属切削力学的原理,开发了一个新的分布式主区域变形模型,以描述有效应力,有效应变,有效应变率和主剪切区的温度。通过在各种切削条件下使用不同材料将其预测结果与有限元模拟结果进行比较,可以评估该分析模型。该模型的实验验证将在本研究的第二部分中介绍。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号