首页> 外文期刊>Journal of industrial microbiology & biotechnology >Genome-scale stoichiometry analysis to elucidate the innate capability of the cyanobacterium Synechocystis for electricity generation
【24h】

Genome-scale stoichiometry analysis to elucidate the innate capability of the cyanobacterium Synechocystis for electricity generation

机译:基因组规模的化学计量分析,以阐明蓝藻集胞藻的发电能力

获取原文
获取原文并翻译 | 示例
           

摘要

Synechocystis sp. PCC 6803 has been considered as a promising biocatalyst for electricity generation in recent microbial fuel cell research. However, the innate maximum current production potential and underlying metabolic pathways supporting the high current output are still unknown. This is mainly due to the fact that the high-current production cell phenotype results from the interaction among hundreds of reactions in the metabolism and it is impossible for reductionist methods to characterize the pathway selection in such a metabolic state. In this study, we employed computational metabolic techniques, flux balance analysis, and flux variability analysis, to exploit the maximum current outputs of Synechocystis sp. PCC 6803, in five electron transfer cases, namely, ferredoxin- and plastoquinol-dependent electron transfers under photoautotrophic cultivation, and NADH-dependent mediated electron transfer under photoautotrophic, heterotrophic, and mixotrophic conditions. In these five modes, the maximum current outputs were computed as 0.198, 0.7918, 0.198, 0.4652, and 0.4424 A gDW(-1), respectively. Comparison of the five operational modes suggests that plastoquinol-/c-type cytochrome-targeted electricity generation had an advantage of liberating the highest current output achievable for Synechocystis sp. PCC 6803. On the other hand, the analysis indicates that the currency metabolite, NADH-, dependent electricity generation can rely on a number of reactions from different pathways, and is thus more robust against environmental perturbations.
机译:集胞藻在最近的微生物燃料电池研究中,PCC 6803被认为是一种有前途的发电生物催化剂。然而,尚不知道先天的最大电流产生潜能和支持高电流输出的潜在代谢途径。这主要是由于以下事实:高电流产生细胞表型是由代谢中数百个反应之间的相互作用产生的,并且还原论方法不可能表征这种代谢状态下的途径选择。在这项研究中,我们采用了计算代谢技术,通量平衡分析和通量变异性分析,以利用Synychocystis sp。的最大电流输出。 PCC 6803在五种电子转移情况下,即在光养养条件下依赖铁氧还蛋白和质体醌的电子转移,以及在光养养,异养和混养条件下依赖NADH的介导的电子转移。在这五种模式下,最大电流输出分别计算为0.198、0.7918、0.198、0.4652和0.4424 A gDW(-1)。五个操作模式的比较表明,以质体喹诺醇/ c型细胞色素为目标的发电具有释放Synechocystis sp。可实现的最大电流输出的优势。 PCC6803。另一方面,分析表明,依赖于货币代谢物NADH的发电可以依靠来自不同途径的多种反应,因此对环境扰动具有更强的抵抗力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号