...
首页> 外文期刊>Journal of Hydrology >Estimating soil solution electrical conductivity from time domain reflectometry measurements using neural networks
【24h】

Estimating soil solution electrical conductivity from time domain reflectometry measurements using neural networks

机译:使用神经网络从时域反射法测量估算土壤溶液的电导率

获取原文
获取原文并翻译 | 示例
           

摘要

Time domain reflectometry (TDR) is a widely used method for measuring the dielectric constant (K-a) and bulk electrical conductivity (sigma(a)) in soils. The TDR measured sigma(a) and K-a can be used to calculate the soil solution electrical conductivity, sigma(w.) The sigma(w), in turn, can be related to the concentration of an ionic tracer. Several models of the sigma(w)-sigma(a)-K-a relationship can be found in the literature. Most of these models require extensive calibration experiments in order to obtaining best-fit parameters. In this paper, we attempt to model the sigma(w)-sigma(a)-K-a relationship using neural networks (NN). We used TDR measured K-a and sigma(a) along with five different soil physical parameters (sand, silt, clay, and organic matter content and bulk density) measured in nine different soil types using three different sigma(w) levels in each soil type. In total, 2953 K-a and sigma(a) measurements were obtained. The NN estimated sigma(w) was found to have a root mean square error (RMSE) of 0.05-0.13 dS m(-1) for the nine different soil types whereas the RMSE of two traditional sigma(w)-sigma(a)-K-a models was 0.12-0.87 dS m(-1). Furthermore, the traditional models exhibited larger errors for low sigma(a) and K-a, whereas the NN estimated sigma(w) did not show any trend in the errors. A sensitivity analysis showed that the NN model was more sensitive to small changes in sigma(a) compared to K-a. Of the five soil physical parameters, the silt and clay content affected the sigma(w)-sigma(a)-K-a relationship the most. The results presented shows that using NN, the sigma(w)-sigma(a)-K-a relationship can be predicted using soil physical parameters without need for elaborate soil specific calibration experiments. (C) 2003 Elsevier Science B.V. All rights reserved. [References: 23]
机译:时域反射法(TDR)是一种广泛用于测量土壤中介电常数(K-a)和体积电导率(sigma(a))的方法。 TDR测得的sigma(a)和K-a可用于计算土壤溶液的电导率sigma(w。)。sigma(w)又可与离子示踪剂的浓度有关。在文献中可以找到sigma(w)-sigma(a)-K-a关系的几种模型。这些模型中的大多数都需要进行大量的校准实验才能获得最佳拟合参数。在本文中,我们尝试使用神经网络(NN)对sigma(w)-sigma(a)-K-a关系建模。我们使用TDR测得的Ka和sigma(a)以及在9种不同土壤类型中测量的5种不同的土壤物理参数(砂,淤泥,粘土和有机质含量和堆积密度),每种土壤类型使用3种不同的sigma(w)水平。总共获得了2953个K-a和sigma(a)测量值。 NN估计的sigma(w)的九种不同土壤类型的均方根误差(RMSE)为0.05-0.13 dS m(-1),而两种传统sigma(w)-sigma(a)的均方根误差(RMSE) -Ka模型为0.12-0.87 dS m(-1)。此外,传统模型对于低sigma(a)和K-a表现出较大的误差,而NN估计的sigma(w)没有显示任何误差趋势。敏感性分析表明,与K-a相比,NN模型对sigma(a)的微小变化更敏感。在五个土壤物理参数中,粉土和粘土含量对sigma(w)-sigma(a)-K-a关系的影响最大。给出的结果表明,使用NN可以使用土壤物理参数预测sigma(w)-sigma(a)-K-a关系,而无需进行详尽的土壤特异性校准实验。 (C)2003 Elsevier Science B.V.保留所有权利。 [参考:23]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号