首页> 外文期刊>Journal of Hydrology >Groundwater pumping in head-controlled coastal systems: The role of lateral boundaries in quantifying the interface toe location and maximum pumping rate
【24h】

Groundwater pumping in head-controlled coastal systems: The role of lateral boundaries in quantifying the interface toe location and maximum pumping rate

机译:由头控制的沿海系统中的地下水抽水:侧向边界在量化界面脚趾位置和最大抽水率中的作用

获取原文
获取原文并翻译 | 示例
           

摘要

The current study explores quantitatively the impact of lateral impermeable boundaries on groundwater pumping in head-controlled coastal systems, based on the potential theory and the image-well superposition method. We compare the interface toe location and maximum pumping rate among three scenarios that assume (S1) an infinite domain width and a finite domain length, (S2) a finite domain width and length, and (SS) an infinite domain width and length. Focusing exclusively on boundary effects, the upstream freshwater discharge is assumed the same for all scenarios, regardless of the variation in domain size. It is found that the impact from both inland and lateral boundaries could play a significant role on the interface toe location and maximum pumping rate (defined as the maximum allowable pumping rate that will not lead to pumping saltwater), depending on sizes of domain length and width. Since the impacts of inland fixed-head boundary and lateral impermeable boundaries are contrary on the maximum interface toe location (defined as the farthest inland point of the interface toe under pumping condition) and maximum pumping rate, they can be offset under certain critical conditions such that the results of the two quantitative indictors (i.e. the maximum interface toe location and maximum pumping rate) in S2 are close to those in SS. In particular, a linear equation is derived to reflect the relationship between the domain width and length under such critical conditions and expressed as L~* = 0.87W~* + 0.62 (W* > 1 or L~* > 1.5), in which W~* and L~* are the domain width and length normalized by the distance between the coastline and pumping well. When L~* > 0.87W~* + 0.62, the impact from lateral overcomes that from inland, producing a larger maximum interface toe location and a lower maximum pumping rate than those in SS. When L~* < 0.87W~* + 0.62, by contrast, the impact from inland exceeds that from lateral and hence, resulting in a smaller maximum interface toe location and a higher maximum pumping rate. It is expected that the results developed in the current study could support the design of numerical models and 3D laboratory experiments as well as the assessment of domain size impact on pumping in head-controlled coastal groundwater systems.
机译:当前的研究基于势能理论和图像井叠加方法,定量研究了侧向不可渗透边界对人为控制的沿海系统中地下水泵送的影响。我们在以下三种情况下比较了接口脚趾的位置和最大泵送速率:(S1)无限域宽度和有限域长度,(S2)有限域宽度和长度,(SS)无限域宽度和长度。仅关注边界效应,在所有情况下都假定上游淡水排放量是相同的,而不管域大小如何变化。发现内陆和侧向边界的影响都可能对界面脚趾的位置和最大抽水率(定义为不会导致抽水的最大允许抽水率)起重要作用,具体取决于域长度和宽度。由于内陆固定头边界和侧向不渗透边界对最大界面脚趾位置(定义为在抽水条件下界面脚趾的最内陆点)和最大抽水率的影响是相反的,因此可以在某些临界条件下抵消它们S2中两个定量指标的结果(即最大界面脚趾位置和最大泵送速率)与SS中的结果接近。特别地,导出线性方程以反映在这种临界条件下畴宽度与长度之间的关系,并表示为L〜* = 0.87W〜* + 0.62(W *> 1或L〜*> 1.5),其中W〜*和L〜*是通过海岸线和抽水井之间的距离标准化的区域宽度和长度。当L〜*> 0.87W〜* + 0.62时,与SS相比,侧向的冲击克服了内陆的冲击,从而产生了更大的最大界面趾位置和更低的最大抽气速率。相比之下,当L〜* <0.87W〜* + 0.62时,来自内陆的冲击超过了来自侧面的冲击,因此导致较小的最大界面趾位置和较高的最大抽气速率。可以预期,当前研究中得出的结果将支持数值模型和3D实验室实验的设计,以及评估域大小对水头控制的沿海地下水系统中抽水的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号