首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >High-frame rate thermal imagery of strombolian explosions: Implications for explosive and infrasonic source dynamics
【24h】

High-frame rate thermal imagery of strombolian explosions: Implications for explosive and infrasonic source dynamics

机译:爆炸爆发的高帧频热成像:对爆炸和次声源动力学的影响

获取原文
获取原文并翻译 | 示例
           

摘要

1Explosive activity at Stromboli volcano is analyzed using a high-frame rate (50 Hz) thermal camera and differential pressure transducers. We develop a thermal image-based decomposition method to derive vertical and horizontal exit velocities of the explosive cloud. Peak vertical velocity ranges between 23 and 203 m/s, slightly higher than previous estimates and rapidly decreasing to a constant value of 30-50 m/s within the first ~0.1 s. Plume velocities are consistent with an elongated cloud expanding much faster vertically than horizontally and indicating the interaction with the conduit wall. Considering a vent radius of ~2 m we estimate a volumetric flux of 200-600 m/s, which converts to total volumes of gas-particles of 10-10 m for a single eruption. These volumes are proportional to the thermal energy recorded by the camera, providing a means to convert thermal radiance to volumes. Comparing the thermal onset of the explosions with the arrival time of the acoustic pressure, we demonstrate that infrasound is propagating 0.14 - 1.7 s ahead of the explosive front. The time difference between thermal and acoustic onsets constrains the infrasonic source within the conduit at 15-35 m below the crater rim. Peak amplitudes of acoustic pressure show a power law relationship (p ~ U ~2) with the exit vertical velocities consistent with the energy balance of a two-phase flow rapidly accelerated in the conduit by gas decompression. Our results support monopole isotropic acoustic radiation of a source embedded within the conduit walls and indicate that explosive dynamics undergo strong accelerations of 10 ~3-10 ~4 m/s ~2.
机译:1使用高帧频(50 Hz)热像仪和压差传感器分析了斯特龙博利火山的爆炸活动。我们开发了一种基于热图像的分解方法,以导出爆炸云的垂直和水平出口速度。峰值垂直速度范围在23至203 m / s之间,略高于先前的估计值,并在最初的约0.1 s内迅速降低至30-50 m / s的恒定值。羽流速度与细长的云相一致,细长的云在垂直方向上比水平方向上的扩展快得多,并表明与管道壁的相互作用。考虑到约2 m的通风口半径,我们估计体积通量为200-600 m / s,一次喷发可转​​换为10-10 m的气体颗粒总体积。这些体积与相机记录的热能成比例,从而提供了一种将热辐射转换为体积的方法。将爆炸的热发作与声压的到达时间进行比较,我们证明次声在爆炸前沿前方传播0.14-1.7 s。热和声起始之间的时间差将火山口内次声源限制在火山口边缘下方15-35 m。声压的峰值幅度显示出幂律关系(p〜U〜2),出口垂直速度与通过气体减压在导管中快速加速的两相流的能量平衡相一致。我们的结果支持嵌入在导管壁内的源的单极各向同性声辐射,并表明爆炸动力学经历了10〜3-10〜4 m / s〜2的强加速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号