首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Upper mantle structure beneath the eastern Pacific Ocean ridges
【24h】

Upper mantle structure beneath the eastern Pacific Ocean ridges

机译:东太平洋海脊下方的上地幔结构

获取原文
获取原文并翻译 | 示例
           

摘要

We analyze vertical component body and surface waves for 10 M w > 5 earthquakes, recorded by ocean bottom seismometers at regional and teleseismic distances. Through waveform modeling, we place new constraints on along-axis variation in temperature and partial melt beneath the eastern Pacific ridges. The resulting best fit models show over 9% variation in average lithosphere shear velocities between different ridge segments. We demonstrate that lid velocity correlates with the square root of plate age, consistent with a conductive cooling process, but we find a more rapid dependence on age close to the rise axis. We map the average plate age into a mean lithospheric temperature for each of our profiles using a half-space cooling model, and the temperature derivatives (dVs/dT) determined from least squares linear fits are ?1.1 and ?0.26 m s?1 deg?1, respectively, for temperatures above and below ~1000°C. The former estimate is more negative than values determined by earlier reports (?0.4 to ?0.7 m s?1 deg?1), using global or regional data from a much wider range of seafloor age but with less resolution at young ages. The high ∣dVs/dT∣ value may suggest the presence of limited partial melt at shallow mantle depths, even after accounting for the strong effect of anelasticity and anharmonicity resulting from temperature and grain size variations. Our data also show a strong north-south difference in mantle structure: the surface waves that traverse the southern East Pacific Rise (EPR) experience shear velocities as low as ~3.75 km s?1, more than 0.2 km s?1 slower than the average mantle structure at comparable depths beneath the northern EPR and the Galapagos spreading center. This difference cannot be explained by the simple conductive cooling process or spreading rate variations between ridge segments. The slow seismic speeds in the low-velocity zone (LVZ) appear to require partial melt. The velocity difference might be solely caused by higher temperatures under the southern EPR, but it may also suggest more melt in the LVZ beneath the southern ridge axis due to potential differences in melt production or extraction compared to the north. In addition, differences in width or symmetry of the partial melt zones can affect the observed path-averaged velocities beneath these two segments. Finally, we determine more accurate depths for ocean transform earthquakes by analyzing the amplitude ratios between body and surface waves. The depths of these transform earthquakes are consistent with brittle deformation within the oceanic crust.
机译:我们分析了海底地震仪在区域和远震距离记录的10 M w> 5地震的垂直分量身体和表面波。通过波形建模,我们对沿温度的轴向变化和东太平洋海脊下方的部分融化提出了新的约束。所得的最佳拟合模型显示出不同脊段之间平均岩石圈剪切速度变化超过9%。我们证明了盖速度与板龄的平方根相关,这与传导冷却过程一致,但是我们发现在上升轴附近对龄的依赖性更快。我们使用半空间冷却模型将平均板龄映射为每个剖面的平均岩石圈温度,由最小二乘线性拟合确定的温度导数(dVs / dT)为?1.1和?0.26 ms?1度?温度分别高于或低于〜1000°C时为1。前者的估计值比早期报告所确定的值(0.4到0.7m ss1 deg1)更负,后者使用的海底年龄范围更大但在年轻年龄时分辨率较低,但使用的是全球或区域数据。高ddVs / dT值可能表明在浅地幔深度存在有限的部分熔融,即使考虑到温度和晶粒尺寸变化导致的非弹性和非谐性的强烈影响也是如此。我们的数据还显示出地幔结构的南北差异:穿过南东太平洋上升带(EPR)的表面波经历的剪切速度低至〜3.75 km s?1,比其慢了0.2 km s?1以上。在北部EPR和加拉帕戈斯群岛传播中心以下相当深度处的平均地幔结构。这种差异不能通过简单的导电冷却过程或脊段之间的扩展速率变化来解释。低速区(LVZ)的慢地震速似乎需要部分融化。速度差异可能仅是由EPR南部的较高温度引起的,但也可能表明与南部相比,由于熔体生产或开采方面的潜在差异,LVZ在南脊轴下方的熔体更多。此外,部分熔体区域的宽度或对称性差异会影响在这两个段下方观察到的平均路径速度。最后,我们通过分析体波与面波之间的振幅比来确定海洋转换地震的更准确深度。这些转变地震的深度与洋壳内部的脆性变形是一致的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号