首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Geometric and Theological asperities in an exposed fault zone
【24h】

Geometric and Theological asperities in an exposed fault zone

机译:裸露断层带的几何和神学凹凸

获取原文
获取原文并翻译 | 示例
           

摘要

Earthquake dynamics are strongly affected by fault zone structure and fault surface geometry, Here we investigate the interplay of bulk deformation and surface topography using detailed structural analysis of a fault zone near Klamath Falls, Oregon, combined with LiDAR measurements of the fault surface. We find that the fault zone has a layered damage architecture. Slip primarily occurs inside a 1 -20 mm wide band that contains principal slip surfaces with individual widths of ~ 100 /j,m. The slip band sits atop a cohesive layer which deforms by granular flow. Several fault strands with total slips of 0.5-150 m also have cohesive layers with thicknesses increasing monotonically with slip. The thickness added to the cohesive layer per unit slip decreases with increasing displacement indicating that slip progressively localizes. The main fault is a continuous surface with 10-40 m long quasi-elliptical geometrical asperities, i.e., bumps. The bumps reflect variations of the thickness of the granular cohesive layer and can be generated by a pinch-and-swell instability. As the granular layer is rheological distinct from its surroundings, the asperities are both geometrical and rheological inhomogenities. Modeling slip along wavy faults shows that slip on a surface with a realistic geometry requires internal yielding of the host rock. Our observations suggest that the internal deformation processes in the fault zone include ongoing fracture, slip along secondary faults, and particle rotation, Granular flow is an important part of faulting in this locale. Slip surfaces localize on the border of the granular cohesive layer. The ongoing slip smoothes the surfaces and thus the structural and geometrical evolution of the granular layer creates a preference for continued of slip on the same surface. There is a feedback cycle between slip on the surface and the generation of the granular layer that then deforms and controls the locus of future slip.
机译:地震动力学受到断层带结构和断层表面几何形状的强烈影响,在这里,我们通过使用俄勒冈州克拉马斯福尔斯附近的断层带的详细结构分析,结合断层的LiDAR测量,来研究整体变形与表面形貌的相互作用。我们发现断层带具有分层的破坏体系。滑移主要发生在1 -20毫米宽的带子内部,该带子包含主滑移表面,各个宽度约为100 / j,m。滑带位于粘结层的顶部,该粘结层会由于颗粒流而变形。几条总滑度为0.5-150 m的断层股线也具有粘性层,厚度随滑度单调增加。单位滑移添加到粘结层的厚度随着位移的增加而减小,表明滑移逐渐定位。主要断层是连续的表面,具有10-40 m长的准椭圆形几何凹凸,即隆起。凸点反映了颗粒状粘结层厚度的变化,并且可以由夹胀和膨胀不稳定性产生。由于粒状层与周围环境在流​​变学上是不同的,所以粗糙物在几何和流变学上都是不均匀的。对波浪状断层的滑移进行建模表明,具有真实几何形状的表面上的滑移需要基质的内部屈服。我们的观察结果表明,断层带内部的变形过程包括持续的裂缝,沿次生断层的滑动以及颗粒的旋转。颗粒流是该区域断层的重要组成部分。滑动表面位于粒状粘合层的边界上。进行中的打滑使表面光滑,因此颗粒层的结构和几何演变为在同一表面上继续打滑创造了偏好。在表面的滑移与颗粒层的生成之间存在一个反馈循环,然后该变形使并控制未来滑移的轨迹。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号