首页> 外文期刊>Journal of Geophysical Research, A. Space Physics: JGR >Jupiter's aurora in ultraviolet and infrared: Simultaneous observations with the Hubble Space Telescope and the NASA Infrared Telescope Facility
【24h】

Jupiter's aurora in ultraviolet and infrared: Simultaneous observations with the Hubble Space Telescope and the NASA Infrared Telescope Facility

机译:木星在紫外线和红外线中的极光:哈勃太空望远镜和美国宇航局红外望远镜设施的同时观测

获取原文
获取原文并翻译 | 示例
           

摘要

We compare Jupiter's northern auroral emissions in infrared (IR) and ultraviolet (UV) using ground-based IR observations from the NASA Infrared Telescope Facility and UV observations from Hubble Space Telescope on 16 December 2000, the only date for which simultaneous observations in the two wavelength regions exist. We use polar projections and longitudinal brightness cuts to compare the IR (H3+ ions) and UV (H_2, H, and Lyman-alpha) aurorae, consisting of the main auroral emission, emission regions both poleward and equatorward of the main emission, and those associated with the Io footprint and its extended tail. We demonstrate that (1) the IR main emission and the equatorward diffuse emissions are generally good proxies for the UV and vice versa, (2) the spatial distribution and temporal behavior of UV and IR emissions within the main emission, at high magnetic latitudes, differ substantially, (3) UV and IR emissions associated with the Io interaction appear at the Io footprint and along an extended (downstream) tail but differ in relative brightness. While the UV aurora is excited directly, the IR aurora is a thermal emission, its intensity depends on both the number density of the H3+ions and the temperature. Three main factors may contribute to the observed morphological differences of the simultaneous emissions in the two wavelengths, namely ion transport, local heating, and the energy of the precipitating electrons. We estimate the H3+ ion transport distances, based on the ion lifetime and suggest that ion transport cannot account for large-scale morphological differences between the UV and IR emissions. We propose that neutral gas heating by particle precipitation and Joule heating locally enhances the H3+emission with no UV counterpart. Additionally, we estimate that local temperature variations are reflected in the IR emission with a time lag of several hours with respect to the UV. Finally, high precipitating electron energies exceeding a certain value might lead to chemical loss of the low altitude H3+ ions, suppress the lower IR emitting layers, and contribute to the observed differences of the emissions between the two wavelength regimes. Key Points Simultaneous comparison of UV and IR auroral emissions at JupiterUV main emission is good proxy for IR but it isn't the case for the polar region Joule heating and the precipitating electron energies explain the differences
机译:我们使用2000年12月16日美国宇航局红外望远镜设施的地面红外观测值和哈勃太空望远镜的紫外观测值比较木星在北部的红外(IR)和紫外(UV)极光发射,这是两个日期中同时进行观测的唯一日期存在波长区域。我们使用极性投影和纵向亮度削减来比较IR(H3 +离子)和UV(H_2,H和Lyman-alpha)极光,该光由主要极光发射,主要发射的极向和赤道发射区域以及那些与Io足迹及其延伸的尾巴相关联。我们证明(1)IR主辐射和赤道扩散辐射通常是UV的良好代表,反之亦然;(2)在高磁纬度下,UV和IR辐射在主辐射内的空间分布和时间行为, (3)与Io相互作用相关的UV和IR发射出现在Io足迹和沿延伸的(下游)尾部,但相对亮度不同。 UV极光直接被激发时,IR极光是一种热辐射,其强度取决于H3 +离子的数量密度和温度。观察到两个波长同时发射的形态差异的三个主要因素可能是离子迁移,局部加热和沉淀电子的能量。我们根据离子寿命估算H3 +离子的传输距离,并建议离子迁移不能解释UV和IR发射之间的大规模形态差异。我们建议通过颗粒沉淀和焦耳热来中性气体加热可局部增强H3 +的排放,而没有UV对应物。此外,我们估计局部温度变化会反映在IR发射中,相对于UV会有几小时的时间滞后。最后,超过一定值的高沉淀电子能量可能会导致低海拔H3 +离子的化学损失,抑制较低的IR发射层,并导致观察到的两个波长范围之间的发射差异。要点在木星上同时比较UV和IR的极光发射UV的主要发射可以很好地替代IR,但是对于极区,焦耳热不是这样,沉淀的电子能量可以解释这一差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号