...
首页> 外文期刊>Journal of Geophysical Research, A. Space Physics: JGR >Solar wind energy input during prolonged, intense northward interplanetary magnetic fields: A new coupling function
【24h】

Solar wind energy input during prolonged, intense northward interplanetary magnetic fields: A new coupling function

机译:长时间强北向行星际磁场期间的太阳风能输入:一种新的耦合功能

获取原文
获取原文并翻译 | 示例
           

摘要

Sudden energy release (ER) events in the midnight sector auroral zone during intense (B > 10 nT), long-duration (T > 3 h), northward (N = B_z > 0 nT) IMF magnetic clouds (MCs) during solar cycle 23 (SC23) have been examined in detail. The MCs with northward-then-southward (NS) IMFs were analyzed separately from MCs with southwardthen- northward (SN) configurations. It is found that there is a lack of ER/substorms during the N field intervals of NS clouds. In sharp contrast, ER events do occur during the N field portions of SN MCs. From the above two results it is reasonable to conclude that the latter ER events represent residual energy remaining from the preceding S portions of the SN MCs. We derive a new solar wind–magnetosphere coupling function during northward IMFs: E_(NIMF) = a N~-(1/12) V~(7/3) B~(1/2) + βV |Dst_(min)|. The first term on the right-hand side of the equation represents the energy input via “viscous interaction,” and the second term indicates the residual energy stored in the magnetotail. It is empirically found that the magnetotail/magnetosphere/ionosphere can store energy for a maximum of ~4 h before it has dissipated away. This concept is defining one for ER/substorm energy storage. Our scenario indicates that the rate of solar wind energy injection into the magnetotail/ magnetosphere/ionosphere for storage determines the potential form of energy release into the magnetosphere/ionosphere. This may be more important to understand solar wind–magnetosphere coupling than the dissipation mechanism itself (in understanding the form of the release). The concept of short-term energy storage is also applied for the solar case. It is argued that it may be necessary to identify the rate of energy input into solar magnetic loop systems to be able to predict the occurrence of solar flares.
机译:在太阳周期期间,强烈的(B> 10 nT),长时间的(T> 3 h),向北的(N = B_z> 0 nT)的午夜扇形极光区突然发生能量释放(ER)事件对23(SC23)进行了详细检查。具有北-南-南(NS)IMF的MC与具有南-北-南(SN)配置的MC分开进行了分析。发现在NS云的N场间隔内没有ER /亚暴。与之形成鲜明对比的是,在SN MC的N个场部分期间确实发生了ER事件。从以上两个结果可以合理地得出结论,后一个ER事件表示从SN MC的前S个部分剩余的剩余能量。我们推导了北向IMF期间的新的太阳风-磁层耦合函数:E_(NIMF)= N〜-(1/12)V〜(7/3)B〜(1/2)+βV| Dst_(min)| 。等式右侧的第一项表示通过“粘滞相互作用”输入的能量,第二项表示存储在磁尾中的剩余能量。根据经验发现,磁尾/磁层/电离层在消散之前最多可以存储能量约4 h。这一概念为ER /亚暴储能定义了一个概念。我们的场景表明,太阳风能注入磁尾/磁层/电离层的速度决定了释放到磁层/电离层中的能量的潜在形式。对于理解太阳风-磁层耦合而言,这比耗散机制本身(理解释放形式)更为重要。短期能量存储的概念也适用于太阳能外壳。有人认为,可能有必要确定输入到太阳电磁回路系统中的能量的比率,以便能够预测太阳耀斑的发生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号