...
首页> 外文期刊>Journal of Fluid Mechanics >Nonlinear stability of gravitationally unstable, transient, diffusive boundary layers in porous media
【24h】

Nonlinear stability of gravitationally unstable, transient, diffusive boundary layers in porous media

机译:多孔介质中重力不稳定,瞬态,扩散边界层的非线性稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

The linear stability of transient diffusive boundary layers in porous media has been studied extensively for its applications to carbon dioxide sequestration. The onset of nonlinear convection, however, remains understudied because the transient base state invalidates the traditional stability methods that are used for autonomous systems. We demonstrate that the onset time of nonlinear convection, t = t_(on), can be determined from an expansion that is two orders of magnitude faster than a direct numerical simulation. Using the expansion, we explore the sensitivity of t_(on) to the initial perturbation magnitude and wavelength, as well as the initial time at which a perturbation is initiated. We find that there is an optimal initial time and wavelength that minimize t_(on), and we obtain analytical relationships for these parameters in terms of aquifer properties and initial perturbation magnitude. This importance of the initial perturbation time and magnitude is often overlooked in previous studies. To investigate perturbation evolution at late-times, t > t_(on), we perform direct numerical simulations that reveal two unique features of transient diffusive boundary layers. First, when a boundary layer is perturbed with a single horizontal Fourier mode, nonlinear mechanisms generate a zero-wavenumber response whose magnitude eventually surpasses that of the fundamental mode. Second, when a boundary layer is simultaneously perturbed with many Fourier modes, the late-time perturbation magnitude is concentrated in the zero-wavenumber mode, and there is no clearly dominant, non-zero, wavenumber. These unique results are further interpreted by comparison with direct numerical simulations of Rayleigh-Bénard convection.
机译:多孔介质中瞬态扩散边界层的线性稳定性已被广泛研究,以用于二氧化碳封存。但是,非线性对流的发生仍然未被充分研究,因为瞬态基态使用于自治系统的传统稳定性方法无效。我们证明,非线性对流的开始时间t = t_(on),可以通过比直接数值模拟快两个数量级的展开来确定。使用扩展,我们探索了t_(on)对初始扰动幅度和波长以及发起扰动的初始时间的敏感性。我们发现有一个最佳的初始时间和波长可以使t_(on)最小,并且可以根据含水层性质和初始扰动幅度获得这些参数的解析关系。最初的扰动时间和大小的重要性在以前的研究中经常被忽略。为了研究在后期t> t_(on)时的扰动演化,我们进行了直接数值模拟,揭示了瞬态扩散边界层的两个独特特征。首先,当边界层被单个水平傅立叶模式扰动时,非线性机制会产生零波数响应,其幅度最终超过基本模态。第二,当边界层同时受到许多傅立叶模式的干扰时,后期的扰动幅度集中在零波数模式下,并且没有明显占优势的非零波数。通过与Rayleigh-Bénard对流的直接数值模拟进行比较,可以进一步解释这些独特的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号