...
首页> 外文期刊>Journal of Computational Chemistry: Organic, Inorganic, Physical, Biological >How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?
【24h】

How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?

机译:抑制静电势(RESP)模型在计算有机分子和生物分子的构象能方面表现如何?

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, we present conformational energies for a molecular mechanical model (Parm99) developed for organic and biological molecules using the restrained electrostatic potential (RESP) approach to derive the partial charges. This approach uses the simple "generic" force field model (Parm94), and attempts to add a minimal number of extra Fourier components to the torsional energies, but doing so only when there is a physical justification. The results are quite encouraging, not only for the 34-molecule set that has been studied by both the highest level ab initio model (GVB/LMP2) and experiment, but also for the 55-molecule set for which high-quality experimental data are available. Considering the 55 molecules studied by all the force field models for which there are experimental data, the average absolute errors (AAEs) are 0.28 (this model), 0.52 (MM3), 0.57 (CHARMm [MSI]), and 0.43 kcal/mol (MMFF). For the 34-molecule set, the AAEs of this model versus experiment and nb initio are 0.28 and 0.27 kcal/mol, respectively. This is a lower error than found with MM3 and CHARMm, and is comparable to that found with MMFF (0.31 and 0.22 kcal/mol). We also present two examples of how well the torsional parameters are transferred from the training set to the test set. The absolute errors of molecules in the test set are only slightly larger than in the training set (differences of <0.1 kcal/mol). Therefore, it can be concluded that a simple "generic" force field with a limited number of specific torsional parameters can describe intra- and intermolecular interactions, although all comparison molecules were selected from our 82-compound training set. We also show how this effective two-body model can be extended for use with a nonadditive force field (NAFF), both with and without lone pairs. Without changing the torsional parameters, the use of more accurate charges and polarization leads to an increase in average absolute error compared with experiment, but adjustment of the parameters restores the level of agreement found with the additive model. After reoptimizing the psi, Phi torsional parameters in peptides using alanine dipeptide (6 conformational pairs) and alanine tetrapeptide (11 conformational pairs), the new model gives better energies than the Cornell et al. (J Am Chem Soc 1995, 117, 5179-5197) force field. The average absolute error of this model for high-level nb initio calculation is 0.82 kcal/mol for alanine dipeptide and tetrapeptide as compared with 1.80 kcal/mol for the Cornell et al. model. For nucleosides, the new model also gives improved energies compared with the Cornell et al. model. To optimize force field parameters, we developed a program called parmscan, which can iteratively scan the torsional parameters in a systematic manner and finally obtain the best torsional potentials. Besides the organic molecules in our test set, parmscan was also successful in optimizing the Psi, Phi torsional parameters in peptides to significantly improve agreement between molecular mechanical and high-level nb initio energies. (C) 2000 John Wiley & Sons, Inc. [References: 58]
机译:在这项研究中,我们提出了分子力学模型(Parm99)的构象能量,该模型是使用抑制静电势(RESP)方法为有机和生物分子开发的,以导出部分电荷。这种方法使用简单的“通用”力场模型(Parm94),并尝试将最小数量的额外傅立叶分量添加到扭转能量中,但是只有在有物理合理性的情况下才这样做。结果非常令人鼓舞,不仅对于最高级别的从头算模型(GVB / LMP2)和实验研究的34分子组,而且对于高质量实验数据均来自55分子组可用。考虑到所有具有实验数据的力场模型研究的55个分子,平均绝对误差(AAE)为0.28(此模型),0.52(MM3),0.57(CHARMm [MSI])和0.43 kcal / mol (MMFF)。对于34分子组,此模型相对于实验的AAE和nb的从头算起分别为0.28和0.27 kcal / mol。这是比MM3和CHARMm更低的误差,并且与MMFF(0.31和0.22 kcal / mol)相当。我们还提供了两个示例,说明扭转参数如何从训练集传递到测试集。测试集中分子的绝对误差仅比训练集中的分子略大(差异<0.1 kcal / mol)。因此,可以得出结论,尽管所有比较分子均选自我们的82种化合物训练集,但具有有限数量的特定扭转参数的简单“通用”力场可以描述分子内和分子间的相互作用。我们还展示了如何扩展有效的两体模型以用于具有和不具有孤对的非加性力场(NAFF)。与实验相比,在不更改扭转参数的情况下,使用更精确的电荷和极化会导致平均绝对误差增加,但是对参数的调整将恢复与加性模型发现的一致程度。在使用丙氨酸二肽(6个构象对)和丙氨酸四肽(11个构象对)重新优化了psi中的Phi扭转参数后,新模型比Cornell等人提供了更好的能量。 (J Am Chem Soc 1995,117,5179-5197)力场。对于高级丙氨酸二肽计算,该模型的平均绝对误差为丙氨酸二肽和四肽为0.82 kcal / mol,而Cornell等人则为1.80 kcal / mol。模型。对于核苷,与康奈尔等人相比,新模型还提供了改进的能量。模型。为了优化力场参数,我们开发了一个名为parmscan的程序,该程序可以系统地迭代扫描扭转参数,并最终获得最佳扭转势。除了我们测试集中的有机分子外,parmscan还成功地优化了肽中的Psi,Phi扭转参数,从而显着改善了分子机械能与高水平nb起始能之间的一致性。 (C)2000 John Wiley&Sons,Inc. [参考:58]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号