首页> 外文期刊>Journal of Combinatorial Theory, Series A >Immanants and finite point processes
【24h】

Immanants and finite point processes

机译:固有和有限点过程

获取原文
获取原文并翻译 | 示例
           

摘要

Given a Hermitian, non-negative definite kernel K and a character chi of the symmetric group on n letters, define the corresponding immanant function K-chi[x(1),..., x(n)] := Sigma(sigma)chi(sigma) Pi(i=1)(n) K(x(i), x(sigma(i))), where the sum is over all permutations sigma of {1, ..., n}. When chi is the sign character (resp. the trivial character), then K-chi is a determinant (resp. permanent). The function K-chi is symmetric and non-negative, and, under suitable conditions, is also non-trivial and integrable with respect to the product measure mu(xn) for a given measure mu. In this case, K-chi can be normalised to be a symmetric probability density. The determinantal and permanental cases or this construction correspond to the fermion and boson point processes which have been studied extensively in the literature. The case where K gives rise to an orthogonal projection of L-2(mu) onto a finite-dimensional subspace is studied here in detail. The determinantal instance of this special case has a substantial literature because of its role in several problems in mathematical physics, particularly as the distribution of eigenvalues for various models of random matrices. The representation theory of the symmetric group is used to compute the normalisation constant and identify the kth-order marginal densities for 1 less than or equal to k less than or equal to n as linear combinations of analogously defined immanantal densities. Connections with inequalities for immanants, particularly the permanental dominance conjecture of Lieb, are considered, and asymptotics when the dimension of the subspace goes to infinity are presented. (C) 2000 Academic Press. AMS 1991 Subject Classifications: Primary 15A15, 60G55; Secondary 20C30, 60G09. [References: 25]
机译:给定一个Hermitian非负定核K和n个字母上的对称组的字符chi,定义相应的固有函数K-chi [x(1),...,x(n)]:= Sigma(sigma chi(sigma)Pi(i = 1)(n)K(x(i),x(sigma(i))),其中和在{1,...,n}的所有置换sigma上。当chi是符号字符(分别是琐碎字符)时,则K-chi是行列式(分别是永久字符)。函数K-chi是对称且非负的,并且在适当的条件下,对于给定的度量mu,乘积度量mu(xn)也是非平凡且可积分的。在这种情况下,可以将K-chi归一化为对称概率密度。确定性和永久性情况或这种构造对应于在文献中已广泛研究的费米子和玻色子点过程。这里详细研究了K引起L-2μ在有限维子空间上的正交投影的情况。这种特殊情况的行列式实例具有大量文献,因为它在数学物理学中的几个问题中扮演着重要的角色,尤其是在各种随机矩阵模型的特征值分布中。对称组的表示理论用于计算归一化常数,并将1小于或等于k小于或等于n的k阶边际密度标识为类似定义的固有密度的线性组合。考虑了与无穷大的不等式的联系,尤其是李伯的永久支配性猜想,并提出了当子空间的维数变为无穷大时的渐近性。 (C)2000学术出版社。 AMS 1991年主题分类:主要15A15、60G55;中学20C30,60G09。 [参考:25]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号