...
首页> 外文期刊>Journal of Climate >The Influence of Cloud and Surface Properties on the Arctic Ocean Shortwave Radiation Budget in Coupled Models*
【24h】

The Influence of Cloud and Surface Properties on the Arctic Ocean Shortwave Radiation Budget in Coupled Models*

机译:耦合模型中云和表面性质对北冰洋短波辐射收支的影响*

获取原文
获取原文并翻译 | 示例
           

摘要

The impact of Arctic sea ice concentrations, surface albedo, cloud fraction, and cloud ice and liquid water paths on the surface shortwave (SW) radiation budget is analyzed in the twentieth-century simulations of three coupled models participating in the Intergovernmental Panel on Climate Change Fourth Assessment Report. The models are the Goddard Institute for Space Studies Model E-R (GISS-ER), the Met Office Third Hadley Centre Coupled Ocean-Atmosphere GCM (UKMO HadCM3), and the National Center for Atmosphere Research Community Climate System Model, version 3 (NCAR CCSM3). In agreement with observations, the models all have high Arctic mean cloud fractions in summer; however, large differences are found in the cloud ice and liquid water contents. The simulated Arctic clouds of CCSM3 have the highest liquid water content, greatly exceeding the values observed during the Surface Heat Budget of the Arctic Ocean (SHEBA) campaign. Both GISS-ER and HadCM3 lack liquid water and have excessive ice amounts in Arctic clouds compared to SHEBA observations. In CCSM3, the high surface albedo and strong cloud SW radiative forcing both significantly decrease the amount of SW radiation absorbed by the Arctic Ocean surface during the summer. In the GISS-ER and HadCM3 models, the surface and cloud effects compensate one another: GISS-ER has both a higher summer surface albedo and a larger surface incoming SW flux when compared to HadCM3. Because of the differences in the models' cloud and surface properties, the Arctic Ocean surface gains about 20% and 40% more solar energy during the melt period in the GISS-ER and HadCM3 models, respectively, compared to CCSM3. In twenty-first-century climate runs, discrepancies in the surface net SW flux partly explain the range in the models' sea ice area changes. Substantial decrease in sea ice area simulated during the twenty-first century in CCSM3 is associated with a large drop in surface albedo that is only partly compensated by increased cloud SW forcing. In this model, an initially high cloud liquid water content reduces the effect of the increase in cloud fraction and cloud liquid water on the cloud optical thickness, limiting the ability of clouds to compensate for the large surface albedo decrease. In HadCM3 and GISS-ER, the compensation of the surface albedo and cloud SW forcing results in negligible changes in the net SW flux and is one of the factors explaining moderate future sea ice area trends. Thus, model representations of cloud properties for today's climate determine the ability of clouds to compensate for the effect of surface albedo decrease on the future shortwave radiative budget of the Arctic Ocean and, as a consequence, the sea ice mass balance.
机译:在20世纪参与政府间气候变化专门委员会的三个耦合模型的模拟中,分析了北极海冰浓度,地表反照率,云量,云冰和液态水路径对地表短波(SW)辐射预算的影响。第四次评估报告。这些模型是戈达德空间研究所模型ER(GISS-ER),气象局第三哈德利中心耦合海洋-大气GCM(UKMO HadCM3)和国家大气研究社区气候系统模型第3版(NCAR CCSM3) )。与观察结果一致,这些模型在夏季均具有较高的北极平均云分率。然而,在云冰和液态水含量上发现了很大的差异。 CCSM3的模拟北极云具有最高的液态水含量,大大超过了北冰洋表面热收支(SHEBA)活动期间观察到的值。与SHEBA观测结果相比,GISS-ER和HadCM3都缺乏液态水,并且北极云中的冰量过多。在CCSM3中,在夏季,高表面反照率和强云SW辐射强迫都显着降低了北冰洋表面吸收的SW辐射量。在GISS-ER和HadCM3模型中,表面和云的影响相互补偿:与HadCM3相比,GISS-ER具有较高的夏季表面反照率和较大的表面入射SW通量。由于模型的云和表面特性存在差异,与CCSM3相比,在GISS-ER和HadCM3模型的融化期间,北冰洋表面分别获得了约20%和40%的太阳能。在二十一世纪的气候运行中,表层净SW通量的差异部分解释了模型海冰面积变化的范围。 CCSM3在二十一世纪期间模拟的海冰面积的大幅减少与地表反照率的大幅下降有关,而反照率的下降仅部分被增加的云SW强迫所补偿。在此模型中,最初较高的云层液态水含量降低了云层分数和云层液态水增加对云层光学厚度的影响,从而限制了云层补偿大表面反照率下降的能力。在HadCM3和GISS-ER中,对表面反照率和云SW强迫的补偿导致净SW通量的变化可忽略不计,并且是解释未来海冰面积趋势适度的因素之一。因此,针对当今气候的云特性模型表示法确定了云补偿地表反照率下降对北冰洋未来短波辐射预算以及海冰质量平衡的影响的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号