...
首页> 外文期刊>Journal of biomedical materials research. Part B, Applied biomaterials. >Patterned poly(chlorotrifluoroethylene) guides primary nerve cell adhesion and neurite outgrowth.
【24h】

Patterned poly(chlorotrifluoroethylene) guides primary nerve cell adhesion and neurite outgrowth.

机译:图案化的聚(三氟氯乙烯)引导初级神经细胞粘附和神经突向外生长。

获取原文
获取原文并翻译 | 示例
           

摘要

Central nervous system (CNS) neurons, unlike those of the peripheral nervous system, do not spontaneously regenerate following injury. Recently it has been shown that in the developing CNS, a combination of cell-adhesive and cell-repulsive cues guide growing axons to their targets. We hypothesized that by mimicking these guidance signals, we could guide nerve cell adhesion and neurite outgrowth in vitro. Our objective was to direct primary nerve cell adhesion and neurite outgrowth on poly(chlorotrifluoroethylene) (PCTFE) surfaces by incorporating alternating patterns of cell-adhesive (peptide) and nonadhesive (polyethylene glycol; PEG) regions. PCTFE was surface-modified with lithium PEG-alkoxide, demonstrating the first report of metal-halogen exchange with an alkoxide and PCTFE. Titanium and then gold were sputtered onto PEG-modified films, using a shadow-masking technique that creates alternating patterns on the micrometer scale. PCTFE-Au regions then were modified with one of two cysteine-terminated laminin-derived peptides, C-GYIGSR or C-SIKVAV. Hippocampal neuron cell-surface interactions on homogeneously modified surfaces showed that neuron adhesion was decreased significantly on PEG-modified surfaces and was increased significantly on peptide-modified surfaces. Cell adhesion was greatest on CGYIGSR surfaces while neurite length was greatest on CSIKVAV surfaces and PLL/laminin positive controls, indicating the promise of peptides for enhanced cellular interactions. On patterned surfaces, hippocampal neurons adhered and extended neurites preferentially on peptide regions. By incorporating PEG and peptide molecules on the surface, we were able to simultaneously mimic cell-repulsive and cell-adhesive cues, respectively, and maintain the biopatterning of primary CNS neurons for over 1 week in culture. Copyright 2000 John Wiley & Sons, Inc.
机译:与周围神经系统不同,中枢神经系统(CNS)神经元在受伤后不会自发再生。最近已经显示,在正在发育的中枢神经系统中,细胞粘附和细胞排斥线索的组合将生长的轴突引导至它们的靶标。我们假设通过模仿这些指导信号,我们可以在体外指导神经细胞粘附和神经突向外生长。我们的目标是通过结合细胞粘附性(肽)区域和非粘附性(聚乙二醇; PEG)区域的交替模式,在聚(三氟氯乙烯)(PCTFE)表面上指导原代神经细胞粘附和神经突生长。 PCTFE用PEG-烷氧基锂进行了表面改性,证明了用烷氧化物和PCTFE进行金属-卤素交换的首次报道。使用可在微米级上产生交替图案的阴影掩膜技术,将钛和金随后溅射到PEG改性膜上。然后用两个半胱氨酸末端的层粘连蛋白衍生肽之一C-GYIGSR或C-SIKVAV修饰PCTFE-Au区。在均质修饰表面上的海马神经元细胞表面相互作用表明,在PEG修饰表面上神经元粘附显着降低,而在肽修饰表面上神经元粘附显着增加。在CGYIGSR表面上细胞粘附最大,而在CSIKVAV表面和PLL / laminin阳性对照上神经突长度最大,表明肽有望增强细胞相互作用。在有图案的表面上,海马神经元优先在肽区域上粘附并延伸神经突。通过在表面上掺入PEG和肽分子,我们能够分别同时模拟排斥细胞和粘附细胞的线索,并在培养过程中维持主要CNS神经元的生物模式。版权所有2000 John Wiley&Sons,Inc.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号