...
首页> 外文期刊>Journal of Biomechanics >Time-dependent biaxial mechanical behavior of the aortic heart valve leaflet.
【24h】

Time-dependent biaxial mechanical behavior of the aortic heart valve leaflet.

机译:主动脉瓣膜小叶的时间依赖性双轴力学行为。

获取原文
获取原文并翻译 | 示例
           

摘要

Despite continued progress in the treatment of aortic valve (AV) disease, current treatments continue to be challenged to consistently restore AV function for extended durations. Improved approaches for AV repair and replacement rests upon our ability to more fully comprehend and simulate AV function. While the elastic behavior the AV leaflet (AVL) has been previously investigated, time-dependent behaviors under physiological biaxial loading states have yet to be quantified. In the current study, we performed strain rate, creep, and stress-relaxation experiments using porcine AVL under planar biaxial stretch and loaded to physiological levels (60N/m equi-biaxial tension), with strain rates ranging from quasi-static to physiologic. The resulting stress-strain responses were found to be independent of strain rate, as was the observed low level of hysteresis ( approximately 17%). Stress relaxation and creep results indicated that while the AVL exhibited significant stress relaxation, it exhibited negligible creep over the 3h test duration. These results are all in accordance with our previous findings for the mitral valve anterior leaflet (MVAL) [Grashow, J.S., Sacks, M.S., Liao, J., Yoganathan, A.P., 2006a. Planar biaxial creep and stress relaxatin of the mitral valve anterior leaflet. Annals of Biomedical Engineering 34 (10), 1509-1518; Grashow, J.S., Yoganathan, A.P., Sacks, M.S., 2006b. Biaxial stress-stretch behavior of the mitral valve anterior leaflet at physiologic strain rates. Annals of Biomedical Engineering 34 (2), 315-325], and support our observations that valvular tissues are functionally anisotropic, quasi-elastic biological materials. These results appear to be unique to valvular tissues, and indicate an ability to withstand loading without time-dependent effects under physiologic loading conditions. Based on a recent study that suggested valvular collagen fibrils are not intrinsically viscoelastic [Liao, J., Yang, L., Grashow, J., Sacks, M.S., 2007. The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet. Journal of Biomechanical Engineering 129 (1), 78-87], we speculate that the mechanisms underlying this quasi-elastic behavior may be attributed to inter-fibrillar structures unique to valvular tissues. These mechanisms are an important functional aspect of native valvular tissues, and are likely critical to improve our understanding of valvular disease and help guide the development of valvular tissue engineering and surgical repair.
机译:尽管在主动脉瓣(AV)疾病的治疗方面取得了持续的进展,但当前的治疗方法仍面临挑战,要在更长的时间内持续恢复AV功能。改进的AV修复和替换方法取决于我们能否更全面地理解和模拟AV功能。虽然先前已经研究了AV瓣叶(AVL)的弹性行为,但在生理双轴负荷状态下随时间变化的行为尚未得到量化。在当前的研究中,我们使用猪AVL在平面双轴拉伸下并加载到生理水平(60N / m等双轴张力)下进行了应变率,蠕变和应力松弛实验,应变率范围从准静态到生理。发现所产生的应力-应变响应与应变率无关,观察到的滞后水平也很低(约17%)。应力松弛和蠕变结果表明,尽管AVL表现出显着的应力松弛,但在3小时的测试持续时间内,蠕变却可以忽略不计。这些结果均符合我们先前对二尖瓣前叶(MVAL)的发现[Grashow,J.S.,Sacks,M.S.,Liao,J.,Yoganathan,A.P.,2006a。二尖瓣前小叶的平面双轴蠕变和应力松弛。生物医学工程学年鉴34(10),1509-1518; J.S. Grashow,A.P. Yoganathan,M.S.萨克斯,2006b。二尖瓣前小叶在生理应变率下的双轴应力-拉伸行为。 《生物医学工程学年鉴》 34(2),315-325],并支持我们的观察,即瓣膜组织是功能各向异性的准弹性生物材料。这些结果似乎是瓣膜组织所独有的,并且表明在生理负荷条件下承受负荷的能力没有时间依赖性。基于最近的一项研究表明瓣膜胶原原纤维不是固有的粘弹性[廖,J。,杨,L,Grashow,J。,萨克斯,MS,2007年。传单。 Journal of Biomechanical Engineering 129(1),78-87],我们推测这种准弹性行为的潜在机制可能归因于瓣膜组织独有的原纤维间结构。这些机制是天然瓣膜组织的重要功能方面,对于提高我们对瓣膜疾病的了解并帮助指导瓣膜组织工程和外科修复的发展可能至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号