...
首页> 外文期刊>Journal of Biomechanics >An inverse modeling approach for stress estimation in mitral valve anterior leaflet valvuloplasty for in-vivo valvular biomaterial assessment
【24h】

An inverse modeling approach for stress estimation in mitral valve anterior leaflet valvuloplasty for in-vivo valvular biomaterial assessment

机译:用于二尖瓣前瓣成形术中应力估算的逆建模方法,用于体内瓣膜生物材料评估

获取原文
获取原文并翻译 | 示例
           

摘要

Estimation of regional tissue stresses in the functioning heart valve remains an important goal in our understanding of normal valve function and in developing novel engineered tissue strategies for valvular repair and replacement. Methods to accurately estimate regional tissue stresses are thus needed for this purpose, and in particular to develop accurate, statistically informed means to validate computational models of valve function. Moreover, there exists no currently accepted method to evaluate engineered heart valve tissues and replacement heart valve biomaterials undergoing valvular stresses in blood contact. While we have utilized mitral valve anterior leaflet valvuloplasty as an experimental approach to address this limitation, robust computational techniques to estimate implant stresses are required. In the present study, we developed a novel numerical analysis approach for estimation of the in-vivo stresses of the central region of the mitral valve anterior leaflet (MVAL) delimited by a sonocrystal transducer array. The in-vivo material properties of the MVAL were simulated using an inverse FE modeling approach based on three pseudo-hyperelastic constitutive models: the neo-Hookean, exponential-type isotropic, and full collagen-fiber mapped transversely isotropic models. A series of numerical replications with varying structural configurations were developed by incorporating measured statistical variations in MVAL local preferred fiber directions and fiber splay. These model replications were then used to investigate how known variations in the valve tissue microstructure influence the estimated ROI stresses and its variation at each time point during a cardiac cycle. Simulations were also able to include estimates of the variation in tissue stresses for an individual specimen dataset over the cardiac cycle. Of the three material models, the transversely anisotropic model produced the most accurate results, with ROI averaged stresses at the fully-loaded state of 432.6±46.5 kPa and 241.4±40.5 kPa in the radial and circumferential directions, respectively. We conclude that the present approach can provide robust instantaneous mean and variation estimates of tissue stresses of the central regions of the MVAL.
机译:在我们对正常瓣膜功能的理解以及为瓣膜修复和置换开发新的工程组织策略方面,估计功能性心脏瓣膜中的局部组织应力仍然是重要的目标。因此,为此需要精确估计局部组织应力的方法,并且特别是需要开发精确的,统计上已知的手段来验证瓣膜功能的计算模型。此外,目前尚没有评估在血液接触中经受瓣膜应力的工程心脏瓣膜组织和替代心脏瓣膜生物材料的方法。虽然我们已经利用二尖瓣前瓣瓣膜成形术作为解决这一局限性的实验方法,但仍需要强大的计算技术来估计植入物的应力。在本研究中,我们开发了一种新颖的数值分析方法,用于估算由超声晶体换能器阵列界定的二尖瓣前小叶(MVAL)中心区域的体内应力。基于三个伪超弹性本构模型,使用逆有限元建模方法对MVAL的体内材料特性进行了仿真:新霍克式,指数型各向同性和完整的胶原纤维映射横向各向同性模型。通过在MVAL局部首选纤维方向和纤维张开度中纳入测量的统计变化,开发出了一系列具有不同结构构型的数值复制方法。然后将这些模型复制用于研究瓣膜组织微结构的已知变化如何影响心动周期中每个时间点的估计ROI应力及其变化。模拟还能够包括对整个心动周期中单个样本数据集的组织应力变化的估计。在这三种材料模型中,横向各向异性模型产生了最准确的结果,在径向和圆周方向上,在全负荷状态下的ROI平均应力分别为432.6±46.5 kPa和241.4±40.5 kPa。我们得出的结论是,本方法可提供MVAL中央区域组织应力的可靠瞬时平均值和变化估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号