首页> 外文期刊>Welding International >Microstructural changes in weld metal during isothermal process
【24h】

Microstructural changes in weld metal during isothermal process

机译:等温过程中焊缝金属的显微组织变化

获取原文
获取原文并翻译 | 示例
           

摘要

This paper describes microstructural observations of weld metals sampled from actual equipment and weld metals taken from samples with different Bi contents to investigate changes in weld metal microstructures and to determine whether or not the addition of Bi exerts any effect on the production of precipitates as an embrittlement factor when stainless steel weld metals operate in high-temperature environments. The results obtained may be summarized as follows.1 Most of the ferrite phase of weld metal sampled from actual equipment, through being exposed during operation to high temperatures near 873K in the long term, is transformed into the #sigma# phase, carbides (M_(23)C_6, M_7C_3) and austenite.2 Among the #sigma# phase and carbides precipitated in the ferrite contained in weld metal sampled from actual equipment, the #sigma# phase has a block-like morphology, being precipitated at the grain boundaries and trans-granularly inside the ferrite grains. The carbides (M_(23)C_6, M_7C_3) are basically continuously precipitated at the #sigma#/#gamma# grain boundaries.3 The results obtained in the investigation of #sigma# phase precipitation behaviour when Bi-free and Bi-containing weld metals were aged at 873-1073K suggest that Bi addition has little effect on #sigma# phase precipitation.4 The reheat cracking susceptibility of the Bi-containing weld metal shows a more pronounced change than that of the Bi-free weld metal. #sigma# phase precipitation is therefore not considered to be an important factor controlling the reheat cracking susceptibility.5 With an increasing Bi content, the oxygen content of the weld metal increases and the contents of inclusions accordingly increase, and the thus induced increase in transgranular hardness is assumed to be a factor heightening the reheat cracking susceptibility.
机译:本文描述了从实际设备中取样的焊缝金属和从具有不同Bi含量的样品中获取的焊缝金属的微观结构观察结果,以调查焊缝金属微观结构的变化,并确定Bi的添加是否对脆化沉淀物的产生产生任何影响不锈钢焊缝金属在高温环境下运行的主要因素。可以总结如下:1从实际设备中取样的焊接金属的大部分铁素体相,通过长期在操作过程中暴露于873K附近的高温下,转变成#sigma#相,即碳化物(M_ (23)C_6,M_7C_3)和奥氏体。2在从实际设备中取样的焊缝金属中包含的#sigma#相和碳化物在铁素体中析出,其中#sigma#相呈块状形态,在晶界析出。并在铁素体晶粒内反晶。碳化物(M_(23)C_6,M_7C_3)基本上在#sigma#/#gamma#晶界处连续析出.3研究无Bi和含Bi焊接时#sigma#相析出行为的结果金属在873-1073K时效表明,添加Bi对#sigma#相的析出几乎没有影响。4含Bi的焊接金属的再热开裂敏感性比无Bi的焊接金属更明显。因此,#sigma#相沉淀不被认为是控制再热裂纹敏感性的重要因素。5随着Bi含量的增加,焊缝金属中的氧含量增加,夹杂物含量也相应增加,从而引起晶界增加硬度被认为是提高再热裂纹敏感性的因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号