首页> 外文期刊>Carbohydrate research >MP2, density functional theory, and molecular mechanical calculations of C-H?π and hydrogen bond interactions in a cellulose-binding module-cellulose model system
【24h】

MP2, density functional theory, and molecular mechanical calculations of C-H?π and hydrogen bond interactions in a cellulose-binding module-cellulose model system

机译:纤维素结合模块-纤维素模型系统中的MP2,密度泛函理论和C-H?π和氢键相互作用的分子力学计算

获取原文
获取原文并翻译 | 示例
           

摘要

Exploring non-covalent interactions, such as C-H?π stacking and classical hydrogen bonding (H-bonding), between carbohydrates and carbohydrate-binding modules (CBMs) is an important task in glycobiology. The present study focuses on intermolecular interactions, such as C-H?π (sugar-aromatic stacking) and H-bonds, between methyl β-d-glucopyranoside and l-tyrosine - a proxy model system for a cellulose-CBM complex. This work has made use of various types of quantum mechanics (QM) and molecular mechanics (MM) methods to determine which is the most accurate and computationally efficient. The calculated interaction potential energies ranged between -24 and -38 kJ/mol. The larger interaction energy is due to H-bonding between the phenyl hydroxyl of tyrosine and the O4 of the sugar. Density functional theory (DFT) methods, such as BHandHLYP and B3LYP, exaggerate the H-bond. Although one of the MM methods (viz. MM+) considered in this study does maintain the C-H?π stacking configuration, it underestimates the interaction energy due to the loss of the H-bond. When the O-H bond vector is in the vicinity of O4 (O-H?O4 ≈ 2, e.g., in the case of MP2/6-31G(d)), the torsional energy drops to a minimum. For this configuration, natural bond orbital (NBO) analysis also supports the presence of this H-bond which arises due to orbital interaction between one lone pair of the sugar O4 and the σ(O-H) orbital of the phenyl group of tyrosine. The stabilization energy due to orbital delocalization of the H-bonded system is ~13 kJ/mol. This H-bond interaction plays an important role in controlling the CH/π interaction geometry. Therefore, the C-H?π dispersive interaction is the secondary force, which supports the stabilization of the complex. The meta-hybrid DFT method, M05-2X, with the 6-311++G(d,p) basis set agrees well with the MP2 results and is less computationally expensive. However, the M05-2X method is strongly basis set dependent in describing this CH/π interaction. Computed IR spectra with the MP2/6-31G(d) method show blue shifts for C1-H, C3-H, and C5-H stretching frequencies due to the C-H?π interaction. However, the M05-2X/6-311++G(d,p) method shows a small red shift for the C1-H stretching region and blue shifts for the C2-H and C3-H stretches. For the aromatic tyrosine C_(δ1)-C_1 and C_(δ2)-C _2 bonds in the complex, the calculated IR spectra show red shifts of 12 cm~(-1) (MP2/6-31G(d)) and 5 cm~(-1) (M05-2X/6-311++G(d,p)). This study also reports the upfield shifts of computed ~1H NMR chemical shifts due to the C-H?π interaction.
机译:探索糖和糖结合模块(CBM)之间的非共价相互作用,例如C-Hαπ堆积和经典氢键(H键),是糖生物学的重要任务。本研究的重点是甲基β-d-吡喃葡萄糖苷和l-酪氨酸之间的分子间相互作用,例如C-Hαπ(糖-芳族堆积)和H键-纤维素-CBM复合物的代理模型系统。这项工作利用了各种类型的量子力学(QM)和分子力学(MM)方法来确定哪种方法最准确且计算效率最高。计算的相互作用势能在-24至-38 kJ / mol之间。较大的相互作用能归因于酪氨酸的苯基羟基与糖的O4之间的H键。密度泛函理论(DFT)方法(例如BHandHLYP和B3LYP)夸大了H键。尽管本研究中考虑的一种MM方法(即MM +)确实保持了C-Hππ堆叠构型,但由于氢键的损失,它低估了相互作用能。当O-H键矢量在O4附近时(O-H2O4≈2,例如,在MP2 / 6-31G(d)的情况下),扭转能量降至最小。对于这种配置,自然键轨道(NBO)分析也支持这种H键的存在,这种H键是由于一对糖O4的孤对与酪氨酸苯基的σ(O-H)轨道之间的轨道相互作用而产生的。 H键系统轨道离域的稳定能为〜13 kJ / mol。这种H键相互作用在控制CH /π相互作用的几何形状中起着重要作用。因此,C-Hαπ分散相互作用是辅助力,它支持了配合物的稳定。具有6-311 ++ G(d,p)基础集的元混合DFT方法M05-2X与MP2结果非常吻合,并且计算开销较小。但是,M05-2X方法在描述此CH /π相互作用时强烈依赖基集。用MP2 / 6-31G(d)方法计算的红外光谱显示,由于C-Hαπ相互作用,C1-H,C3-H和C5-H拉伸频率发生蓝移。但是,M05-2X / 6-311 ++ G(d,p)方法显示C1-H拉伸区域的红移较小,而C2-H和C3-H拉伸的蓝移较小。对于配合物中的芳香族酪氨酸C_(δ1)-C_1和C_(δ2)-C _2键,计算得出的红外光谱显示12 cm〜(-1)(MP2 / 6-31G(d))和5的红移。厘米〜(-1)(M05-2X / 6-311 ++ G(d,p))。这项研究还报告了由于C-Hαπ相互作用而导致的〜1H NMR化学位移的高场位移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号