首页> 外文期刊>X-Ray Spectrometry: An International Journal >Synchrotron radiation refraction topography for characterization of lightweight materials
【24h】

Synchrotron radiation refraction topography for characterization of lightweight materials

机译:同步辐射折射形貌表征轻质材料

获取原文
获取原文并翻译 | 示例
           

摘要

The employment of synchrotron radiation for refraction topography of materials has considerable advantages over standard x-ray sources. The much higher beam intensity and the parallel and monochromatic radiation provide faster measurements and better angular and spatial resolution. X-ray refraction techniques image the inner surface and interface concentration of micro-structured materials. This effect of x-ray optics is additional to small-angle scattering by diffraction, when the scattering objects reach micrometre dimensions. We have developed x-ray refraction techniques within the last decade in order to meet the growing demands for improved non-destructive characterization of high-performance composites, ceramics and other low-density materials. Sub-micron particle dimensions, the pore size of ceramics, the crack density distribution and single fibre debonding within damaged composites can be measured and visualized by computer-generated interface topographs. For this purpose investigations are now being performed at the new hard x-ray beamline of the Federal Institute for Materials Research and Testing (BAM) at BESSY, Berlin. This BAMline provides monochromatic radiation of photon energies from 5 to 60 keV from a double multilayer and/or a double-crystal monochromator. A separate instrument is dedicated to the further development and application of synchrotron radiation refraction (SRR) topography. Different from conventional small-angle scattering cameras with collimating slits and pinholes, scattering angles down to a few seconds of arc are selected by a single-crystal analyser, similar to a Bonse-Hart diffractometer. A 20 mum spatial resolution of the scattering micro-structures is achieved by a CCD camera with a fluorescent converter. First SRR topographs of aircraft composites [carbon fibre-reinforced plastics (CFRP), carbon fibre-reinforced ceramics (C/C), metal matrix ceramics (MMC)] will be reported. Copyright (C) 2004 John Wiley Sons, Ltd.
机译:与标准X射线源相比,采用同步辐射进行材料的折射形貌具有相当大的优势。更高的光束强度以及平行和单色辐射提供了更快的测量以及更好的角度和空间分辨率。 X射线折射技术可对微结构材料的内表面和界面浓度成像。当散射物体达到微米级尺寸时,x射线光学器件的这种效果是通过衍射进行的小角度散射的补充。在过去的十年中,我们开发了X射线折射技术,以满足对提高高性能复合材料,陶瓷和其他低密度材料的无损表征的不断增长的需求。可以通过计算机生成的界面形貌图测量和可视化亚微米级的颗粒尺寸,陶瓷的孔径,裂缝密度分布和受损复合物中单纤维的剥离。为此,目前正在柏林BESSY的联邦材料研究与测试研究所(BAM)的新硬X射线束线上进行研究。该BAMline从双层和/或双层晶体单色仪提供5至60 keV的光子能量单色辐射。单独的仪器专用于同步加速器辐射折射(SRR)形貌的进一步开发和应用。与具有准直狭缝和针孔的传统小角度散射相机不同,类似于Bonse-Hart衍射仪,单晶分析仪可以选择低至几秒弧度的散射角。带有荧光转换器的CCD摄像机可实现20微米的散射微结构空间分辨率。飞机复合材料[碳纤维增强塑料(CFRP),碳纤维增强陶瓷(C / C),金属基质陶瓷(MMC)]的第一个SRR地形图将被报道。版权所有(C)2004 John Wiley Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号