首页> 外文期刊>Surface & Coatings Technology >Model based optimization criteria for the generation of deep compressive residual stress fields in high elastic limit metallic alloys by ns-laser shock processing
【24h】

Model based optimization criteria for the generation of deep compressive residual stress fields in high elastic limit metallic alloys by ns-laser shock processing

机译:基于模型的优化准则,用于通过ns激光冲击加工在高弹性极限金属合金中产生深压缩残余应力场

获取原文
获取原文并翻译 | 示例
           

摘要

Laser Shock Processing (LSP) is based on the application of a high intensity pulsed Laser beam (I > 1 GW/cm(2); tau < 50 ns) on a metallic target forcing a sudden vaporization of its surface into a high temperature and density plasma that immediately develops inducing a shock wave propagating into the material. The main acknowledged advantages of LSP consist on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behavior, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Due to these specific advantages, Laser Shock Processing is considered as a competitive alternative technology to classical treatments for improving fatigue, corrosion cracking and wear resistance of metallic materials, and is being developed as a practical process amenable to production technology. In this paper, a model based systematization of process optimization criteria and a practical assessment on the real possibilities of the technique is presented along with practical results at laboratory scale on the application of LSP to characteristic high elastic limit metallic alloys, showing the induced residual stresses fields and the corresponding results on mechanical properties improvement induced by the treatment. The homogeneity of the residual stress fields distribution following the laser treatment spatial density will be specially analyzed. (c) 2008 Elsevier B.V. All rights reserved.
机译:激光冲击处理(LSP)是基于在金属靶材上施加高强度脉冲激光束(I> 1 GW / cm(2); tau <50 ns),迫使其表面突然汽化成高温和密度等离子体立即形成,引起激波传播到材料中。 LSP的主要公认优势在于其能够在金属合金件中引入相对较深的压缩残余应力场,从而改善了机械性能,从而显着提高了经处理试样的抗磨损,裂纹扩展和应力腐蚀开裂的寿命。由于这些特殊的优点,激光冲击加工被认为是经典疗法的竞争性替代技术,可改善金属材料的疲劳,腐蚀裂纹和耐磨性,并且正在开发为适合生产技术的实用工艺。本文提出了基于模型的过程优化标准系统化方法,并对该技术的实际可能性进行了实际评估,并在实验室规模上将LSP应用于特征性高弹性极限金属合金上给出了实际结果,显示了引起的残余应力场和由处理引起的机械性能改善的相应结果。将特别分析激光处理空间密度后残余应力场分布的均匀性。 (c)2008 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号