...
首页> 外文期刊>Tissue engineering, Part C. Methods >A New In Vivo Magnetic Resonance Imaging Method to Noninvasively Monitor and Quantify the Perfusion Capacity of Three-Dimensional Biomaterials Grown on the Chorioallantoic Membrane of Chick Embryos
【24h】

A New In Vivo Magnetic Resonance Imaging Method to Noninvasively Monitor and Quantify the Perfusion Capacity of Three-Dimensional Biomaterials Grown on the Chorioallantoic Membrane of Chick Embryos

机译:一种新的体内磁共振成像方法,用于无创监测和量化生长在雏鸡绒囊尿膜上的三维生物材料的灌注能力。

获取原文
获取原文并翻译 | 示例
           

摘要

Adequate vascularization in biomaterials is essential for tissue regeneration and repair. Current models do not allow easy analysis of vascularization of implants in vivo, leaving it a highly desirable goal. A tool that allows monitoring of perfusion capacity of such biomaterials noninvasively in a cheap, efficient, and reliable in vivo model would hence add great benefit to research in this field. We established, for the first time, an in vivo magnetic resonance imaging (MRI) method to quantify the perfusion capacity of a model biomaterial, DegraPol? foam scaffold, placed on the embryonic avian chorioallantoic membrane (CAM) in ovo. Perfusion capacity was assessed through changes in the longitudinal relaxation rate before and after injection of a paramagnetic MRI contrast agent, Gd-DOTA (Dotarem?; Guerbet S.A.). Relaxation rate changes were compared in three different regions of the scaffold, that is, at the interface to the CAM, in the middle and on the surface of the scaffold (p<0.05). The highest relaxation rate changes, and hence perfusion capacities, were measured in the interface region where the scaffold was attached to the CAM, whereas the surface of the scaffold showed the lowest relaxation rate changes. A strong positive correlation was obtained between relaxation rate changes and histo-logically determined vessel density (R ~2=0.983), which corroborates our MRI findings. As a proof-of-principle, we measured the perfusion capacity in different scaffold materials, silk fibroin either with or without human dental pulp stem cells. For these, three to four times larger perfusion capacities were obtained compared to DegraPol; demonstrating that our method is sensitive to reveal such differences. In summary, we present a novel in vivo method for analyzing the perfusion capacity in three-dimensional-biomaterials grown on the CAM, enabling the determination of the perfusion capacity of a large variety of bioengineered materials.
机译:生物材料中足够的血管生成对于组织再生和修复至关重要。当前的模型不允许对体内植入物的血管化进行简单的分析,这使其成为非常理想的目标。因此,一种允许在廉价,有效和可靠的体内模型中无创地监测此类生物材料灌注能力的工具将为该领域的研究带来极大的好处。我们首次建立了体内磁共振成像(MRI)方法,以量化模型生物材料DegraPol?的灌注能力。泡沫支架,放置在卵内的胚胎禽绒膜尿囊膜(CAM)上。通过在顺磁性MRI造影剂Gd-DOTA(Dotarem?; Guerbet S.A.)注射前后的纵向松弛率的变化来评估灌注能力。在支架的三个不同区域,即在与CAM的界面处,支架的中间和表面,比较了松弛率的变化(p <0.05)。在支架连接到CAM的界面区域中,测量到最高的松弛率变化,从而测量到灌注能力,而支架的表面显示出最低的松弛率变化。在弛豫率变化和组织学确定的血管密度之间存在强正相关(R〜2 = 0.983),这证实了我们的MRI结果。作为原理的证明,我们测量了有或没有人牙髓干细胞的不同支架材料(丝素蛋白)的灌注能力。对于这些,获得的灌注容量是DegraPol的三到四倍;证明我们的方法很容易发现此类差异。总而言之,我们提出了一种新颖的体内方法,用于分析在CAM上生长的三维生物材料的灌注能力,从而能够确定多种生物工程材料的灌注能力。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号