首页> 外文期刊>Theoretical chemistry accounts >Quantum cluster size and solvent polarity effects on the geometries and Mossbauer properties of the active site model for ribonucleotide reductase intermediate X: a density functional theory study
【24h】

Quantum cluster size and solvent polarity effects on the geometries and Mossbauer properties of the active site model for ribonucleotide reductase intermediate X: a density functional theory study

机译:量子簇大小和溶剂极性对核糖核苷酸还原酶中间体X活性位点模型的几何形状和Mossbauer性质的影响:密度泛函理论研究

获取原文
获取原文并翻译 | 示例
           

摘要

In studying the properties of metalloproteins using ab initio quantum mechanical methods, one has to focus on the calculations on the active site. The bulk protein and solvent environment is often neglected, or is treated as a continuum dielectric medium with a certain dielectric constant. The size of the quantum cluster of the active site chosen for calculations can vary by including only the first-shell ligands which are directly bound to the metal centers, or including also the second-shell residues which are adjacent to and normally have H-bonding interactions with the first-shell ligands, or by including also further hydrogen bonding residues. It is not well understood how the size of the quantum cluster and the value of the dielectric constant chosen for the calculations will influence the calculated properties. In this paper, we have studied three models (A, B, and C) of different sizes for the active site of the ribonucleotide reductase intermediate X, using density functional theory (DFT) OPBE functional with broken-symmetry methodology. Each model is studied in gas-phase and in the conductor-like screening (COSMO) solvation model with different dielectric constants ε = 4, 10, 20, and 80, respectively. All the calculated Fe-ligand geometries, Heisenberg J coupling constants, and the Mossbauer isomer shifts, quadrupole splittings, and the ~(57)Fe, ~1H, and ~(17)O hyperfme tensors are compared. We find that the calculated isomer shifts are very stable. They are virtually unchanged with respect to the size of the cluster and the dielectric constant of the environment. On the other hand, certain Fe-ligand distances are sensitive to both the size of the cluster and the value of ε. ε = 4, which is normally used for the protein environment, appears too small when studying the diiron active site geometry with only the first-shell ligands as seen by comparisons with larger models.
机译:在使用从头开始的量子力学方法研究金属蛋白的特性时,必须将重点放在活性位点的计算上。通常忽略整体蛋白质和溶剂环境,或将其视为具有一定介电常数的连续介电介质。通过仅包括直接结合到金属中心的第一壳配体,或还包括邻近并通常具有H键的第二壳残基,可以选择用于计算的活性位点的量子簇大小。与第一壳配体相互作用,或还包括其他氢键残基。对于量子簇的大小和为计算选择的介电常数的值将如何影响所计算的性质,人们尚不十分了解。在本文中,我们使用破损对称性方法的密度泛函理论(DFT)OPBE函数,研究了核糖核苷酸还原酶中间体X活性位点的三种不同大小的模型(A,B和C)。每个模型都在气相和类似导体的屏蔽(COSMO)溶剂化模型中进行研究,分别具有不同的介电常数ε= 4、10、20和80。比较所有计算出的Fe-配体几何形状,Heisenberg J耦合常数,Mossbauer异构体位移,四极分裂以及〜(57)Fe,〜1H和〜(17)O超张量。我们发现计算的异构体位移非常稳定。就簇的大小和环境的介电常数而言,它们实际上是不变的。另一方面,某些Fe-配体距离对簇的大小和ε值都敏感。 ε= 4(通常用于蛋白质环境)在研究仅具有第一壳配体的二价铁活性位点几何结构时显得太小,与较大模型的比较表明。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号